|                           | Utech                             |
|---------------------------|-----------------------------------|
| Name:                     | A                                 |
| Roll No.:                 | To Alexand W. Exemple for England |
| Invigilator's Signature : |                                   |

# CS / B.TECH (EIE) / SEM-4 / CS-405 (EI) / 2011 2011

# **DATA STRUCTURE & ALGORITHMS**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

# GROUP - A ( Multiple Choice Type Questions )

|    |                                                                       |                                                         | •          | • •      | •                       |  |
|----|-----------------------------------------------------------------------|---------------------------------------------------------|------------|----------|-------------------------|--|
| 1. | Choose the correct alternatives for the following: $10 \times 1 = 10$ |                                                         |            |          |                         |  |
|    | i)                                                                    | A full binary tree with $n$ leaves contains             |            |          |                         |  |
|    |                                                                       | a)                                                      | n nodes    | b)       | $\log n$ nodes          |  |
|    |                                                                       | c)                                                      | 2n-1 nodes | d)       | 2 <sup>n</sup> nodes.   |  |
|    | ii)                                                                   |                                                         | traversal  | of binar | y search tree gives the |  |
|    |                                                                       | sorted list in ascending order.                         |            |          |                         |  |
|    |                                                                       | a)                                                      | In-order   | b)       | Post-order              |  |
|    |                                                                       | c)                                                      | Pre-order  | d)       | All of these.           |  |
|    | iii)                                                                  | Reverse polish notation is also called                  |            |          |                         |  |
|    |                                                                       | a)                                                      | Postfix    | b)       | Prefix                  |  |
|    |                                                                       | c)                                                      | Infix      | d)       | Undefined.              |  |
|    | iv)                                                                   | The evaluation of the postfix expression 23 5 7 * $-12$ |            |          |                         |  |
|    |                                                                       | is                                                      |            |          |                         |  |
|    |                                                                       | a)                                                      | 12         | b)       | 0                       |  |
|    |                                                                       | c)                                                      | -12        | d)       | 35.                     |  |
|    |                                                                       |                                                         |            |          |                         |  |

[ Turn over

4251

### CS / B.TECH (EIE) / SEM-4 / CS-405 (EI) / 2011



#### **GROUP - B**

### (Short Answer Type Questions)

Answer any *three* of the following.  $3 \times 5 = 15$ 

- 2. What do you mean by recursion? Write a *C* code to implement Tower of Hanoi problem using recursion.
- 3. Define and distinguish between binary tree and *B*-tree.
- 4. What is stack? Write and explain the operations associated to stack.
- 5. Write algorithms to insert into and delete elements from a doubly linked list.

4251

# CS / B.TECH (EIE) / SEM-4 / CS-405 (EI) 2011

 Define hashing. Explain with suitable example the collision resolution technique using linear probing with open addressing.

#### **GROUP - C**

#### (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

7. a) In a nonempty Binary tree, the following list occurs after tree traversal:

In-order: DGBAHEICF

Post-order: GDBHIEFCA

Generate the complete binary tree indicating all intermediate steps. Hence find the preorder traversal.

- b) Write down the algorithm to convert an expression from infix to postfix.
- c) Using the above algorithm, find out the postfix notation of the following infix expression.

7 + 5 + 3

- 8. a) Write an algorithm to reverse a single linked list using as minimum memory as possible.
  - b) Write a recursive algorithm for binary search.
  - c) Compute the time complexity of your algorithm.
  - d) Prove that for any no-empty binary tree T, if  $n_0$  is the number of leaves and  $n_2$  is the number of nodes of degree 2, then  $n_0 = n_2 + 1$ . 4 + 4 + 3 + 4
- 9. a) What is a complete graph? Show that sum of degree of all the vertices in a graph is always even.
  - b) Write down BSF algorithm for searching a graph. Compare it with DFS.

## CS / B.TECH (EIE) / SEM-4 / CS-405 (EI) / 2011





$$4 + (4 + 3) + 4$$

- 10. a) Define circular queue.
  - b) Write an algorithm to insert an item in circular queue.
  - c) Compare and contrast between Dequeue and Priority queue.
  - d) What is the addressing formula for an element A[i][j] in column major order, if i and j are bounded by the lower and upper limits as  $l^1 \le i \le u^1$  and  $l^2 \le j \le u^2$ ? Assume that the base address is L and w be the number of words allocated to each element. 2 + 5 + 4 + 4
- 11. Write short notes on any three of the following:  $3 \times 5$ 
  - a) Quicksort
  - b) Tail recursion
  - c) Double ended queue
  - d) AVL tree
  - e) Threaded binary tree.

========

4251 4