

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Guestions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) In bisection method, if $\left[a_{0}, b_{0}\right]$ be the initial interval then condition satisfied by a_{0} and b_{0} for the existence of a root, for the equation $f(x)=0$, is
a) $\quad f\left(a_{0}\right) f\left(b_{0}\right)<1$
b) $\quad f\left(a_{0}\right) f\left(b_{0}\right)>0$
c) $\quad f\left(a_{0}\right) f\left(b_{0}\right)<0$
d) $\quad f\left(a_{0}\right) f\left(b_{0}\right)>1$.
ii) $\delta E^{\frac{1}{2}}$ is equal to
a) Δ
b) ∇
c) E
d) none of these.

CS / B.Tech (EIE)/SEM-3/CS-302/2010-11

a) Even
b) Even or Odd
c) Odd
d) Multiple of three.
iv) In solving simultaneous equations by Gauss-Jordan method, the coefficient matrix is reduced to
a) Upper triangular matrix
b) Lower triangular matrix
c) Diagonal matrix
d) Tri-diagonal matrix.
v) Runge-Kutta formula has a truncation error which is of the order of
a) $\quad h^{2}$
b) $\quad h^{3}$
c) $\quad h^{4}$
d) $\quad h^{5}$.
vi) If $f(x)=\frac{1}{x}$, the divided difference $[a, b, c$] is
a) $\frac{1}{a+b+c}$
b) $\frac{1}{a b c}$
c) $\frac{1}{a^{2}+b^{2}}$
d) $\frac{1}{a+b-c}$.

[^0]viii) Round-off of the number 0.0063945 correct up to 4 significant figures is
a) 0.0064
b) 0.0063
c) 0.006395
d) $\quad 0.006394$.
ix) Which of the following is the correct way to declaring a float pointer?
a) float pts
b) float *pr
c) *float pr
d) none of these.
x) If $\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y$ and $y(1)=0$, then $y(1 \cdot 1)$ according to Euler's methods is [$h=0 \cdot 1$]
a) $0 \cdot 1$
b) 0.3
c) 0.5
d) 0.9 .

CS/B.Tech (EIE)/SEM-3/CS-302/2010-11
xi) The operator ++ is a
a) Unary operator
b) Binary operator
c) Ternary operator
d) Null operator.
xii) If $i=6$ and $t=++i$, then the value of t is
a) 7
b) 6
c) 5
d) 8 .

GROUP - B
(Short Answer Type Guestions)
Answer any three of the following. $3 \times 5=15$
2. Find the unknowns p and q from the following table :

$X:$	45	50	55	60	65
$Y:$	$3 \cdot 0$	p	$2 \cdot 0$	q	$-2 \cdot 4$

3. Prove that $\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$.
4. If $\frac{5}{3}$ is represented by the approximate number 0.8333 , compute absolute, relative and the percentage errors.
5. Compute Romberg estimate R_{22} for $\int_{1}^{2} \frac{1}{x} x \mathrm{~d} x$.
6. Find the inverse of the matrix by Gauss elimination method :

$$
\left[\begin{array}{ccc}
2 & -2 & 4 \\
2 & 3 & 2 \\
-1 & 4 & -1
\end{array}\right]
$$

7. a) Find a root of the equation $x^{3}-3 x-5=0$ by the method of false position correct to three decimal points.
b) Solve the given system of equation :
$10 x+2 y+z=9$
$2 x+20 y-2 z=-44$
$-2 x+3 y+10 z=22$
by Gauss-Seidel method.
c) Explain the geometric significance of Newton-Raphson method for computing the real root of an equation $f(x)=0$. $5+5+5$
8. a) Solve the following system of equations by LUfactorization method :
$x+y+z=9$
$2 x-3 y+4 z=13$
$3 x+4 y+5 z=40$.
b) Using Runge-Kutta method of order 4, find $y(0 \cdot 2)$ given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 e^{x}+2 y, \quad y(0)=0, \quad y(0)=1$ taking $h=0 \cdot 1$.
$7+8$

CS/B.Tech (EIE)/SEM-3/CS-302/2010-11

9. a) Construct the interpolation polynomial for the function $y=\sin \pi x$, choosing the points $x_{0}=\theta$ and find $f\left(\frac{1}{3}\right)$.
b) Write a C-program which evaluates $\sqrt{27}$ correct to seven places of decimals by Newton-Raphson method.
c) Find $y^{\prime}(x)$ given :

$x=0$	1	2	3	4
$y(x)=1$	1	15	40	85

10. a) The following table gives the viscosity of oil as function of temperature. Use Lagrange's formula to find viscosity of oil at a temperature of 140°.

Temperature :	110	130	160	190
Viscosity :	10.8	8.1	5.5	4.8

b) The values of $\sin x$ are given below, for different values of x. Form a difference table and from this table find $\sin 52^{\circ}$.

x	30°	35°	40°	45°	50°	55°
$y=\sin x$	0.5000	0.5736	0.6428	0.7071	0.7660	0.8192

c) Derive Simpson's one third rule from Newton-Cote's quadrature formula.

$$
5+5+5
$$

11. a) What is an array ? How does array differ from structure? Explain with example.
b) How does an ordinary function differ from a recursive function ? How is a recursive function converted to a non-recursive one? Discuss.
c) Write a C-program to multiply two given matrices of given order. $5+5+5$

[^0]: CS / B. Tech (EIE)/SEM-3/CS-302/2010-11 fresh
 vii) The output of the following program will be: \#include<stdio.h> main()
 \{

    ```
    int i=0, x=0;
    while (i<0) {
    if (i%5==0) {
    x+=i; }
    ++i; }
    printf ("\nx=%d", x);
    ```

 a) 25
 b) 30
 c) 35
 d) 20 .

