	©©o Utech
Name :	
Roll No. :	
Invigilator's Signature :	

CS/B.Tech (EIE)/SEM-3/CS-302/2010-11 2010-11

NUMERICAL METHODS AND PROGRAMMING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) In bisection method, if $[a_0, b_0]$ be the initial interval then condition satisfied by a_0 and b_0 for the existence of a root, for the equation f(x) = 0, is
 - a) $f(a_0)f(b_0) < 1$ b) $f(a_0)f(b_0) > 0$
 - c) $f(a_0)f(b_0) < 0$ d) $f(a_0)f(b_0) > 1$.
- ii) $\delta E^{\frac{1}{2}}$ is equal to
 - a) Δ b) ∇
 - c) *E* d) none of these.

[Turn over

CS/B.Tech (EIE)/SEM-3/CS-302/2010-11

iii) For trapezoidal rule of numerical integration number of sub-intervals should be

- a) Even b) Even or Odd
- c) Odd d) Multiple of three.
- iv) In solving simultaneous equations by Gauss-Jordan method, the coefficient matrix is reduced to
 - a) Upper triangular matrix
 - b) Lower triangular matrix
 - c) Diagonal matrix
 - d) Tri-diagonal matrix.
- v) Runge-Kutta formula has a truncation error which is of the order of

 h^5 .

a) h^2 b) h^3

c)
$$h^4$$
 d)

vi) If $f(x) = \frac{1}{x}$, the divided difference [a, b, c] is

a)
$$\frac{1}{a+b+c}$$

b) $\frac{1}{abc}$
c) $\frac{1}{a^2+b^2}$
d) $\frac{1}{a+b-c}$

vii)	The	CS/B.T.			SEM-3/CS-302/2010-11 Utech	
	#inc	elude <stdio.h></stdio.h>			A manual state and a state	
	mai	n()				
	{					
		int i=0, x=0;				
		while (i<0) $\{$				
		if (i%5==0) {				
		x+=i; }				
		++i;				
		printf ("\nx=%d"	, x);			
	a)	25		b)	30	
	c)	35		d)	20.	
viii)		nd-off of the nu gnificant figures is		0.0	063945 correct up to	
	a)	0.0064		b)	0.0063	
	c)	0.006395		d)	0·006394.	
ix)		ch of the followin t pointer ?	g is th	e co	rrect way to declaring a	
	a)	float ptr		b)	float *ptr	
	c)	*float ptr		d)	none of these.	
X)	If $\frac{d}{d}$	If $\frac{dy}{dx} = x + y$ and y (1) = 0, then y (1·1) according to				
	Euler's methods is $[h = 0.1]$					
	a)	0.1		b)	0.3	
	c)	0.5		d)	0.9.	
3104			3		[Turn over	

- xi) The operator ++ is a
 - a) Unary operator

c) Ternary operator d) Null operator.

b)

xii) If i = 6 and t = ++i, then the value of t is

- a) 7 b) 6
- c) 5 d) 8.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Find the unknowns *p* and *q* from the following table :

X:	45	50	55	60	65
Y:	3.0	p	$2 \cdot 0$	q	-2.4
	٨	∇			

3. Prove that
$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$

4. If $\frac{5}{3}$ is represented by the approximate number 0.8333, compute absolute, relative and the percentage errors.

5. Compute Romberg estimate R_{22} for $\int_{1}^{2} \frac{1}{x} x \, dx$.

6. Find the inverse of the matrix by Gauss elimination method :

 $\begin{bmatrix} 2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 4 & -1 \end{bmatrix}$

- 7. a) Find a root of the equation $x^3 3x 5 = 0$ by the method of false position correct to three decimal points.
 - b) Solve the given system of equation :

10x + 2y + z = 92x + 20y - 2z = -44-2x + 3y + 10z = 22

by Gauss-Seidel method.

- c) Explain the geometric significance of Newton-Raphson method for computing the real root of an equation f(x) = 0. 5 + 5 + 5
- 8. a) Solve the following system of equations by LUfactorization method :

x + y + z = 92x - 3y + 4z = 13 3x + 4y + 5z = 40.

b) Using Runge-Kutta method of order 4, find y (0·2) given that $\frac{dy}{dx} = 3e^x + 2y$, y (0) = 0, y (0) = 1 taking h = 0.1. 7 + 8

CS/B.Tech (EIE)/SEM-3/CS-302/2010-11

- 9. a) Construct the interpolation polynomial for the function $y = \sin \pi x$, choosing the points $x_0 = 0$, $x_1 = \frac{1}{6}$, $x_2 = \frac{1}{2}$ and find $f\left(\frac{1}{3}\right)$.
 - b) Write a C-program which evaluates $\sqrt{27}$ correct to seven places of decimals by Newton-Raphson method.
 - c) Find y'(x) given :

 $x = 0 \quad 1 \quad 2 \quad 3 \quad 4$ $y(x) = 1 \quad 1 \quad 15 \quad 40 \quad 85$ Hence, find y'(x) at x = 0.5, where y'(x) is $\frac{dy}{dx}$. 5 + 5 + 5

10. a)The following table gives the viscosity of oil as function
of temperature. Use Lagrange's formula to find viscosity
of oil at a temperature of 140° .
Temperature : 110130160190
Viscosity : 10.88.15.54.8

b) The values of sin x are given below, for different values of x. Form a difference table and from this table find sin 52°.

x	30°	35°	40°	45°	50°	55°
$y = \sin x$	0.5000	0.5736	0.6428	0.7071	0.7660	0.8192

c) Derive Simpson's one third rule from Newton-Cote's quadrature formula. 5 + 5 + 5

- b) How does an ordinary function differ from a recursive function ? How is a recursive function converted to a non-recursive one ? Discuss.
- c) Write a C-program to multiply two given matrices of given order. 5 + 5 + 5

[Turn over