

CS/B.Tech(EIE)/SEM-3/EE-301(EI)/2009-10 2009
 CIRCUIT THEORY \& NETWORKS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \infty 1=10
$$

i) If the voltage across a given capacitor is increased, the amount of stored charge
a) increases
b) decreases
c) remains constant
d) is exactly doubled.
ii) A practical voltage source consists of
a) an ideal voltage source in series with an internal resistance
b) an ideal voltage source in parallel with an internal resistance
c) both (a) \& (b) are correct
d) none of these.

CS/B.Tech(EIE)/SEM-3/EE-301(EI)/2009-10

iii) Determine the current I in the circuit shown is figure:

Dia.
a) 2.5 A
b) 1 A
c) 3.5 A
d) 4.5 A .
iv) A 1 kHz sinusoidal volatage is applied to an RL circuit. What is the frequency of the resulting current?
a) 1 kHz
b) $0 \cdot 1 \mathrm{kHz}$
c) 100 kHz
d) 2 kHz .
v) A series circuit consisting of two elements has the following current $\&$ applied voltage :

$$
\begin{aligned}
& i=4 \cos \left(2000 t+11 \cdot 32^{\circ}\right) \mathrm{A} \\
& v=200 \sin \left(2000 t+50^{\circ}\right) \mathrm{V}
\end{aligned}
$$

The circuit elements are
a) resistance \& capacitance
b) capacitance \& inductance
c) inductance \& resistance
d) both resistances.
vi) In a certain RL circuit, $V_{R}=2 \mathrm{~V} \& V_{L}=3 \mathrm{~V}$.

What is the magnitude of the total voltage?
a) 2 V
b) 3 V
c) 5 V
d) 3.61 V .
vii) Maximum power transfer occurs at
a) 100% efficiency
b) 50% efficiency
c) 25% efficiency
d) 75% efficiency.
viii) A source has an emf of 10 V and impedance of $500+j 100 \Omega$. The amount of maximum power transferred to the load will be
a) 0.5 mW
b) 0.05 mW
c) 0.05 W
d) 0.5 W .
ix) Transient current in an RLC circuit is oscillatory when
a) $\quad R=2 \sqrt{L / C}$
b) $\quad R=0$
c) $\mathrm{R}>2 \sqrt{L / C}$
d) $\quad \mathrm{R}<2 \sqrt{L / C}$.
x) When a series RL circuit is connected to a voltage V at t $=0$, the current passing through the inductor L at $\mathrm{t}=0^{+}$is
a) $\frac{V}{R}$
b) infinite
c) zero
d) $\quad \frac{V}{L}$.
xi) The current in the neutral wire of a balanced threephase, four-wire star-connected load is given by
a) zero
b) $\sqrt{3}$ times the current in each phase
c) 3 times the current in each phase
d) the current in each phase.
xii) A two port network is simply a network inside a black box $\&$ the network has only
a) two terminals
b) two pairs of accessible terminals
c) two pairs of ports
d) 4 pairs of ports.

CS/B.Tech(EIE)/SEM-3/EE-301(EI)/2009-10
GROUP - B
(Short Answer Type Guestions)
Answer any three of the following.

2. Determine the voltage V which causes the current I_{1} to be zero in the circuit shown Use mesh analysis.

Dia.
3. A series cricuit consisting of two pure elements has the following current \& voltage :

$$
\begin{aligned}
& v=100 \sin \left(2000 t+50^{\circ}\right) V \\
& i=20 \cos \left(2000 t+20^{\circ}\right) A
\end{aligned}
$$

Find the element in the circuit.
4. A three phase balanced delta-connected load with line voltage of 200 V , has line currents as $I_{1}=1090^{\circ}$,
$I_{2}=10-150^{\circ} \& I_{3}=10-30^{\circ}$.
a) What is the phase sequence ?
b) What are the impedances ?

CS/B.Tech(EIE)/SEM-3/EE-301(EI) 2009-10 for the current when the switch is closed at $t=0$:romen
dia.
6. Find the Norton's equivalent circuit across terminal $A B$ for the circuit shown.

Dia.
GROUP - C
(Long Answer Type Questions)
Answer any three of the following.
7. a) The circuit shown in figure consists of series $R-L$ elements. The sine wave is applied to the circuit when the switch S is closed at $t=0$. Determine the current $i(t)$

Dia.

CS/B.Tech(EIE)/SEM-3/EE-301(EI)/2009-10

b) Find the Laplace transform of the waveform shown

Dia.

$$
10+5
$$

8. a) For the parallel circuit shown in figure. Find the magnitude of current in each. Branch \& the total current. What is the phase angle between the applied voltage \& current ?

Dia.

b) Two impedances $Z_{1}=20+j 10 \& Z_{2}=10-j 30$ are connected in parallel \& this combination is connected in series with $Z_{3}=30+j X$. Find the value of X which will produce resonance.
$9+6$
9. a) Find Z-parameters of the network shown in figure. Hence find the $A B C D$ parameters for the same network.

Dia.

$\mathrm{CS} / \mathrm{B} . \mathrm{Tech}(\mathrm{EIE}) / \mathrm{SEM}-3 / \mathrm{EE}-301$ (E) CH 2009-10

b) Calculate the effective inductance of the circuit shown in figure

Dia.

$$
10+5
$$

10. a) Determine the load resistance to receive maximum power from the source. Also find the maximum power delivered to the load in the circuit shown.

Dia.
b) Determine the output voltage $V_{\text {out }}$ in the circuit shown.

Dia.
$9+6$
[Turn over

CS/B.Tech(EIE)/SEM-3/EE-301(EI)/2009-10

11. a) A three phase, balanced delta connected load of $(4+j 8) \Omega$ is connected across a $400 \sqrt{N}-3$ balanced supply. Determine the phase currents \& line currents. Assume the phase sequence to be $R Y B$. Also calculate the power drawn by the load.
b) Calculate the total power input \& readings of the two wattmeters connected to measure power in a three phase balanced load if the reactive power input is $15 \mathrm{kVAR} \&$ load p.f. is $0 \cdot 8$.

