	Utech
Name:	
Roll No.:	The Samuely and Explana
Invigilator's Signature :	

ANALOG ELECTRONIC CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

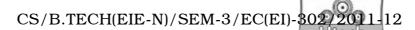
The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:


 $10 \times 1 = 10$

- i) An ideal op-amp has CMRR and slew rate respectively
 - a) infinity and infinity b) zero and infinity
 - c) zero and zero d) infinity and zero.
- ii) An astable multivibrator generates
 - a) triangular waveform b) sinusoidal waveform
 - c) square waveform d) none of these.

3259(N) [Turn over

iii) An op-amp is an open loop configuration which can be used as

- a) Comparator
- b) Log amplifier
- c) Integrator
- d) Differentiator.
- iv) Schmitt trigger is a comparator using
 - a) negative feedback
 - b) positive feedback
 - c) both positive and negative feedbacks
 - d) none of these.
- v) According to Barkhausen criteria in order to sustain the oscillations
 - a) loop gain of the circuit must be negligible
 - b) loop gain of the circuit must be equal to unity
 - c) the phase shift around the circuit must be 180 degree
 - d) none of these.

- vi) An op-amp has a voltage gain of 500000. If the output voltage is 1V, the input voltage is
 - a) 2 mV

b) 5 mV

c) 10 mV

- d) 1V.
- vii) When the Q point is the centre of the ac load line, the maximum peak-to-peak output voltage equals
 - a) V_{CEQ}

- b) $2 V_{CEQ}$
- c) $V_{CEQ}/2$
- d) none of these.
- viii) Which one of the following feedback topologies offers high input impedance?
 - a) Voltage series
- b) Voltage shunt
- c) Current series
- d) Current shunt.
- ix) In phase shift oscillator the feedback circuit (lag circuit) produces phase shift of
 - a) 180°

b) -270°

c) 360°

d) - 180°.

x)	For a wide range of oscillations i	n the audio range, the
	preferred oscillator is	A famus (VExecution and Confident

- a) Heartley
- b) Phase shift
- c) Wien-bridge
- d) Hartley and Colpitt.
- xi) Astable multivibrator may be used as
 - a) frequency to voltage converter
 - b) voltage to frequency converter
 - c) squaring circuit
 - d) comparator circuit.
- xii) Transformer couple class A power amplifier provides very high frequency because the
 - a) collector voltage is stepped up
 - b) dc resistance in the collector circuit is low
 - c) large signal amplifier
 - d) none of these.
- xiii) To avoid false triggering of the NE 555 timer the RESET pin ($Pin\ 4$) is generally connected to
 - a) Pin 8

b) Pin 1

c) Pin 3

d) No connection (NC).

CS/B.TECH(EIE-N)/SEM-3/EC(EI)-302

- xiv) Miller capacitance is generated in
 - a) CB configuration
- b) CC configuration
- c) CE configuration
- d) All configurations.
- xv) The output gain of an emitter follower circuit is
 - a) greater than 1
- b) equal to 1
- c) less than 1
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Find out the ripple factor of a full-wave rectifier.
- 3. Find out the condition of an astable multivibrator so that its duty cycle would be less than 50% and draw the circuit diagram.
- 4. Explain how the bandwidth of an amplifier will be increased using negative feedback.
- 5. Draw the high frequency model of a transistor and define all parameters.
- 6. What is an instrumentation amplifier? How a basic differential amplifier is modified to a grounded load instrumentation amplifier? 1+4
- 7. Explain the monostable operation of NE 555 with proper circuit diagram and waveform.

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 8. a) Why hybrid parameters are so called?
 - b) Draw the equivalent circuit of a transistor using h parameters. Determine input impedance, current gain and voltage gain and output admittance in terms of h parameters.
 - c) Obtain h-parameters of CE mode in terms of those of CB mode. 2 + 8 + 5
- 9. a) Explain how it is possible to achieve better *Q*-point stabilization by using self bias circuit. Assume relevant assumptions.
 - b) Consider a self bias circuit with an npn silicon transistor CE configuration. The circuit is designed in such a way that the $I_C=1.5$ mA, $V_{CE}=10$ V and the stability factor is less than equal to 6. If $V_{CC}=20$ V, $V_{BE}=0.7$ V, B = 100, $R_C=5$ K, calculate the values of R_E , R_1 , R_2 .
 - c) How the operating point of a transistor can shift? How will you define the stability factors for a transistor?

5 + 5 + 5

3259(N)

CS/B.TECH(EIE-N)/SEM-3/EC(EI)-302

- 10. a) Draw the circuit diagram of a Heartley oscillator and explain it's operation.
 - b) Draw the *ac* equivalent circuit of Heartley oscillator and determine the frequency of oscillation.
 - c) The frequency of a Heartley oscillator is to vary from 60 kHz to 120 kHz. The tuning capacitor can be changed from 100 pF to 400 pF. The transistor employed in the circuit has $h_{fe}=90$ and $\Delta_{he}=0.2$. Find the values of the inductances, neglecting the mutual inductance between them. 5+5+5
- 11. a) Draw the circuit diagram of a controlled transistor series regulator. Explain the circuit and the functionality of pass transistor. Write down the expression of output voltage. 2 + 1 + 1
 - b) Design a complete + 15 V power supply starting from transformer and using 78XX series IC. 5
 - c) Why does Q point of a transistor shift ? What are the different techniques for bias compensation ? Design suitable compension circuit for variation of V_{BE} and I_{CO} . 1+1+4

3259(N) 7 [Turn over

- 12. a) What are the criteria of a good Instrumentation
 Amplifier ? Draw the circuit diagram of an
 Instrumentation Amplifier using transducer bridge and
 explain its operation.
 - b) Explain the operation of an inverting Schmitt trigger circuit.
 - c) Explain with circuit diagram the operation of voltage to current converter with grounded load. 7 + 4 + 4
- 13. Write short notes on any *three* of the follwing: 3×5
 - a) Comparator
 - b) Full-wave precision rectifier
 - c) PLL
 - d) VCO
 - e) Phase shift oscillator.