	Utech
Name:	
Roll No.:	An Agreement (by Exemple of Exemple and Exemple of
Inviailator's Sianature :	

CS/B.Tech (EEE)/SEM-7/EEE-701/2009-10 2009 POWER SYSTEM – II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) When all the phases are short-circuited it gives rise to
 - a) symmetrical fault current
 - b) unsymmetrical fault current
 - c) both symmetrical and unsymmetrical fault currents
 - d) none of these.
 - ii) The most common type of fault in overhead line is
 - a) single line to ground b) double line to ground
 - c) line to line d) none of these.

77516 [Turn over

CS/B.Tech (EEE)/SEM-7/EEE-701/2009-10

- b) absent
- c) only negative sequence is present
- d) only zero sequence is present.
- iv) In a 3-phase, 4-wire unbalanced system, the magnitude proportion of zero sequence current in neutral wire is
 - a) $\frac{1}{2}$

b) $\frac{1}{3}$

c) 0

- d) none of these.
- v) Compared to *d.c.* circuit, *a.c.* circuit interruption is
 - a) difficult
- b) easier
- c) the same
- d) none of these.
- vi) Current chopping mainly occurs in
 - a) oil circuit breaker
 - b) air circuit breaker
 - c) air blast circuit breaker
 - d) SF_6 circuit breaker.

a)

b)

c)

d)

a)

b)

c)

a)

c)

a)

c)

a)

c)

X)

xi)

d)

none of these.

circuit breaker

CS/B.Tech (EEE)/SEM-7/EEE-701/2009-10

GROUP - B (Short Answer Type Questions)

- 2. a) What do you understand by percentage reactance?
 - b) Why is the reactance expressed in per cent in shortcircuit calculations?
- 3. Why do we use reactors in power system? Discuss their advantages.
- 4. Define sequence impedances.
- 5. Explain the working principle of electromagnetic relay.
- 6. What is a fuse? Bring out the difference between fuse and circuit breaker.

GROUP – C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define the following terms:
 - i) Recovery voltage
 - ii) Rate of rise of restriking voltage
 - iii) Resistance switching.

- b) In a 220 kV system, the reactance and capacitance upto the location of circuit breaker is 8 Ω and 0.25 μF respectively. A resistance of 600 Ω is connected across the contacts of the circuit breaker. Determine the following :
 - i) Damped frequency of oscillation
 - ii) Critical value of resistance which will give no transient oscillation.7 + 8
- 8. a) Define critical clearing angle.
 - b) Explain what is equal area criterion.
 - c) A 50 Hz generator is delivering 60% of the power that it is capable of delivering through a transmission line to an infinite bus. A fault occurs that increases the reactance between the generator and the infinite bus to 400% of the value before the fault. When the fault is isolated, the maximum power that can be delivered is 75% of the original maximum value. Determine the critical clearing angle for the condition described.

2 + 5 + 8

CS/B.Tech (EEE)/SEM-7/EEE-701/2009-10

- 9. a) Discuss the problems in a circuit breaker associated with the interruption of
 - i) low inductive current
 - ii) capacitive current.
 - b) Discuss the operating principle of SF_6 circuit breaker. What are its advantages over other types of circuit breakers?
- 10. a) Define steady state stability.
 - b) Explain what is meant by swing equation.
 - c) A 50 Hz synchronous generator is connected to an infinite bus through a line. The p.u. reactances of the generator and the line are *j* 0·3 p.u. and *j* 0·2 p.u. respectively. The no-load voltage of the generator is 1·1 p.u. and that of infinite bus is 1·0 p.u. The inertia constant of the generator is 3 MW-sec/MVA. Determine the frequency of natural oscillation under small perturbation if the generator is loaded to 80% of the maximum power transfer capacity. 3 + 4 + 8

77516 6

- 11. Write short notes on any three of the following:
 - a) Transient stability
 - b) Vacuum circuit breaker
 - c) SF_6 circuit breaker
 - d) Negative sequence network
 - e) Impedance relays.