	Uiteah
Name:	
Roll No.:	To Opening Servicing and Excitons
Invigilator's Signature :	

CS/B.TECH(EEE/ICE)OLD/SEM-3/MS-301/2012-13 2012 MATERIAL SCIENCE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - i) Fick's first law describes diffusion process when
 - a) concentration depends on time and space
 - b) concentration varies with time
 - c) concentration is independent of space
 - d) concentration depends on space but independent of time.
 - ii) In Hume-Rothery rules of extensive solid solubility, the atomic diameter of the solute and solvent atoms should not differ by more than
 - a) 50%

b) 15%

c) 2%

d) 0%.

3267(O) [Turn over

CS/B.TECH(EEE/ICE)OLD/SEM-3/MS-301/2012-13

D.1 L	O11(1		VI O 0	Ulech
iii)	The	term 'phonon' is related	d to	(A)
	a)	light wave		To Phones (I' Executing 2nd Existent
	b)	gas molecules		Trining ld 1
	c)	lattice vibration		
	d)	positively charged ion	s.	
iv)	Whi	ich of the following el	emer	nts is added to iron to
	imp	rove its corrosion resist	tance	?
	a)	Zn	b)	Cr
	c)	Mg	d)	Al.
v) Curie-Weiss law is obeyed by				
	a)	paramagnetic material	s	
	b)	ferromagnetic materia	ls be	low Curie temperature
	c)	antiferromagnetic mat	erials	S
	d)	ferromagnetic materia	ls ab	ove Curie temperature.
vi)			tion (distance for an ion pair
	inte	rionic force will be		
	a)	zero	b)	minimum
	c)	maximum	d)	any value.
vii)			empe	erature the orientation
	-	rization in general		_
	a)	increases	b)	decreases
	c)	remains constant	d)	sharply increases.
viii)	•			
	a)	point imperfection	b)	•
	c)	-		volume imperfection.
ix)		of regular HCP crystal		cture is
	a)	0.68	b)	0.74
	c)	0.22	d)	zero.
x)		· · · · · · · · · · · · · · · · · · ·	nion	vacancy in a crystal of
	the	type <i>AB</i> is called		

Schottky defect a)

Frenkel defect b)

pair of vacancies c)

none of these. d)

(Short Answer Type Questions)

Answer any three of the following.

 $8 \times 5 = 15$

- 2. What is meant by plastic behaviour of a material? Explain with necessary stress-strain curve. What are engineering stress and engineering strain of a material?
- 3. Define atomic packing factor. Prove that atomic packing factor for the FCC crystal structure is greater than the BCC crystal structure.
- 4. What is meant by polarization? Explain different types of polarization mechanism involved in dielectric material.
- 5. What is creep? Describe the mechanism of creep with a suitable graph.
- 6. State and explain Hume-Rothery rules of alloying. Hence explain the Cu-Ni solution.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) What are ferroelectricity and piezoelectricity? Give examples for ferroelectric and piezoelectric materials.

3 + 2

b) What is meant by local field in a solid dielectric? Deduce an expression for the local field in a solid dielectric and hence obtain Clausius-Mosotti relation.

2 + 4

- c) Calculate the electronic polarisability of an isolated Se atom. The atomic radius of a Se atom is 0.12 nm.
- 8. a) State some drawbacks of Drude-Lorentz theory.
 - b) Explain why conductivity of a conductor decreases with temperature.
 - c) If a copper wire of commercial purity is to conduct 10 A with a maximum voltage drop of 0.4~V/m, what would be its minimum diameter ?

Given : Conductivity = $5.85 \times 10^{7} \Omega^{-1} \text{ m}^{-1}$.

3267(O)

CS/B.TECH(EEE/ICE)OLD/SEM-3/MS-301/2012-13 ©

d) A uniform Ag-wire has a resistivity of $1.54 \times 10^{-8} \Omega$ -m at room temperature. For an electric field along the wire of 1 V/cm, compute the average drift velocity and mobility of electron.

Given : No. of electrons = 5.8×10^{28} / m 3 , $e = 1.602 \times 10^{-19}$ C.

- 9. a) What are Schottky and Frenkel defects? 2 + 2
 - b) What do you mean by dislocation in the material ? Explain different types of dislocations that may be present in the material. 1+4
 - c) With the help of a representative sketch explain briefly the salient points of the metastable iron-carbon equilibrium diagram.
- 10. a) Explain the solubility limits of Pb-Sn alloy from its phase diagram. What is the eutectic point for such an alloy? 5+2
 - b) Define the term APF of a crystal lattice. Calculate the APF of an HCP crystal.

Given: $\frac{c}{a} = \sqrt{\frac{8}{3}}$.

c) Explain why *X*-rays are used in determination of crystal structures.