

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PC-EE-303 / PC-EEE-303

PUID: 03521 (To be mentioned in the main answer script)

ELECTROMAGNETIC FIELD THEORY

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1.	Choose	the	correct	alternatives	for	any	ten	of	the
	following:			•			10 ×	1 :	= 10

i) The constant a for a solenoidal vector field

$$F = 2x + 3yi + 3y - 2zj + (y + az) k$$
 is

a) 5

b) - 5

c) 8

d) 3

ii) The work done by the Lorentz force F on a charged particle is

a) F.dr

b) 0

c) $q / \varepsilon 0$

d) qF.

**-3804/3(N)

[Turn over

3. I E	S.TECH/EE/EEE(N) ODD/ CENT O/ COLUMN /								
iii)		The 'dot' product of two vectors perpendicular to each other is							
	a)	zero b) maximum							
	c)	1 d) -1.							
iv)	W	hat causes electromagnetic wave polarization?							
	a)	Refraction							
	b)	Reflection							
4	c) Longitudinal nature of electromagnetic wave								
٠	d)	Transverse nature of electromagnetic wave.							
v)	Th	e electric field intensity at a point situated							
	4 metres from a point charge is 200 N/C								
	distance is reduced to 2 metres, the field intensity								
	Wil	l be							
	a)	-400 N/C b) 600 N/C							
	c)	800 N/C d) 1200 N/C.							
ri)	The	e electric dipole moment is directed from							
	a)	+ q to - q							
	b)	-q to $+q$							
	c)	perpendicular to the line joining $+ q$ and $- q$							
,	d).	none of these.							

- vii) The divergence of $G = xa_x + ya_y + za_z$ at point P(2, 2, 2) is
 - a) 1

b) · 2

c) 3

- d) 4
- viii) For transmission line load matching over a wide range of frequencies, it is best to use a
 - a) balun
 - b) broadband directional coupler
 - c) double stub
 - d) single stub of adjustable position.
- ix) Maxwell's equation is not completely symmetrical because
 - a) isolated magnetic charges do not exist
 - b) it is difficult to get curl of a vector in spherical co-ordinates
 - c) $\nabla \cdot \overrightarrow{D}$ is always zero
 - d) $\nabla \times \overrightarrow{H}$ does not exist in free space.
- x) The force on a current element due to a magnetic field is zero if the angle between the current element and magnetic field is
 - a) zero

b) $\frac{\pi}{4}$

c) $\frac{\pi}{2}$

d) $\frac{3\pi}{4}$

xi) Solid angle $d\omega$ subtended by a small surface element $\left(\overrightarrow{d},\overrightarrow{A}\right)\theta$ when θ is kept constant at the origin is

- a) $\sin \theta d\theta d\phi$
- b) zero
- c) $\sin \theta d\theta dr$
- d) $d \phi d \theta dr$.

xii) The value of ∮ d l along a circle of radius 2 units is

a) 0

b) 2π

c) 4π

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. State and proof Gauss's law in electrostatics.
- 3. In a loss-less transmission line, the velocity of propagation is 2.5×10^8 m/s. If the capacitance of the line is 30 pF, find the inductance of the line, the characteristic impedance and phase constant at 100 MHz.
- 4. State and prove Helmholtz theorem.

**-3804/3(N)

4

1 Mm 00.

- 5. What values of A and B are required if the two fields $\vec{E} = 120\pi \cos\left(10^6\pi t \beta x\right)\hat{a}_y, V/m \text{ and}$ $\vec{H} = A\cos\left(10^6\pi t \beta x\right)\hat{a}_z, A/m \text{ satisfy Maxwell's equations in linear isotropic homogeneous medium where } \epsilon_r = \mu_r = 4 \text{ and } \alpha = 0$?
- A capacitor is charged to a certain potential by a battery through a resistance of 3 mega ohm. If it reaches $\frac{2}{3}$ of its final potential in 0.6 s, calculate its capacitance.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Show that for a transmission line $Z_0^2 = (Z_i)_{SC} (Z_i)_{OC}$ where, Z_0 is the characteristic impedance of the line, $(Z_i)_{SC}$ and $(Z_i)_{OC}$ are the short-circuit and open-circuit impedance of the line respectively.
 - b) A 300 m long line has $R = 4.5 \text{ K}\Omega$, L = 0.15 mH, G = 60 m mho and C = 12 nF operated at f = 6 MHz. Find the characteristic impedance of the line, propagation constant and velocity of propagation.
 - c) For a distortion-less transmission line, show that the phase velocity is given by $v_p = 1/\sqrt{LC}$, where L and C are the inductance and capacitance per unit length of the line respectively.

* *-3804/3(N)

5

[Turn over

- 8. a) What is polarization of the electromagnetic wave? 4
 - b) For a lossy dielectric material having $\mu_r = 1$, $\epsilon_r = 48$, $\sigma = 20$ S/m calculate the attenuation constant, phase constant and intrinsic impedance at a frequency of 16 GHz. 3 + 3 + 3
 - c) What is Poynting vector?
- 9. a) Using Biot-Savart's law prove that $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$ 5
 - b) If at any position vector potential $\vec{A} = 5(x^2 + y^2 + z^2)\hat{i}$ evaluate the magnetic field at that position.
 - c) Compare the electrostatic field and magnetic field. 2
 - d) Show that for a finite current distribution $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$. State the condition under which magnetic scalar potential exists. 4 + 1
- 10. a) A solenoid has length 2 m and mean diameter 0.05 m. It has four layers of 1000 turns each. Calculate the flux density at its centre when a current of 2.5 A flows through it.
 - b) Two straight wires each 10 cm long are parallel to one another and separated by a distance of 2 cms. They carry currents of 30 amps and 40 amps respectively. Calculate the force experienced by either of the wires.
 - c) What is Lorentz force in magnetostatics?

* *-3804/3(N)

6 axBCSing

CS/B.TECH/EE/EEE(N)/ODD/SEM-3/PC-EE303/PC-EE303/2019-20

- 11. a) Evaluate $\iiint_V \overrightarrow{\nabla} \cdot \overrightarrow{A} dV$ where V is the volume of the cubical box bounded by the planes x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.
 - b) Show that $\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \phi = \nabla^2 \phi$.
 - c) If $\phi = x^2 y^2 + 2z$, find $\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \phi$.