	Utech
<i>Name</i> :	
Roll No.:	The State of State Line and Excellent
Invigilator's Signature :	

POWER SYSTEM DYNAMICS AND CONTROL

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) Small signal stability is defined as the ability of the power system to maintain
 - a) synchronism
- b) asynchronism
- c) both of these
- d) none of these.
- ii) Inter-area mode oscillations are
 - a) 0.8 1.75 Hz small magnitude oscillations
 - b) 0.25 0.75 Hz small magnitude oscillations
 - c) 8 17.5 Hz small magnitude oscillations
 - d) 25 75 Hz small magnitude oscillations.

SE-100 Turn over

- iii) If the generator voltage regulator gain is increased, there would be much improvement on
 - a) Transient stability
 - b) Dynamic stability
 - c) Steady state stability
 - d) all of these.
- iv) Series capacitors can cause self-excited oscillations at
 - a) sub-synchronous frequencies
 - b) synchronous frequencies
 - c) super-synchronous frequencies
 - d) both (a) & (b).
- v) Automatic voltage regulators (AVR) have
 - a) high gain, low time constant
 - b) low gain, high time constant
 - c) high gain, high time constant
 - d) low gain, low time contant.

CS/B.TECH(EE-N)/SUPPLE/SEM-8/EE-801B/2010 Large gain AVR amplifies its

- a) negative damping b) positive damping
- c) both (a) and (b) d) either (a) or (b).
- vii) On a long high voltage transmission line under heavy load condition, var compensation can be provided by installing
 - a) series inductive reactors
 - b) series capacitors

vi)

- c) shunt inductive reactors
- d) none of these.
- viii) Good regulation means
 - a) less fluctuations from no load to full load
 - b) more fluctuations from no load to full load
 - c) less fluctuations from full load to no load
 - d) none of these.
- ix) Voltage collapse typically occurs in power systems which are usually
 - a) heavily loaded b) faulted
 - c) lightly loaded d) both (a) and (b).

- x) A static var compensator (SVC) is
 - a) voltage controlled shunt compensation device
 - b) current controlled device
 - c) both (a) and (b)
 - d) none of these.
- xi) Reactive power sensitivity can be defined as
 - a) $\frac{\partial |v|}{\partial \theta}$

b) $\frac{\partial \theta}{\partial |v|}$

c) $\frac{|\mathbf{v}| \partial \theta}{\partial |\mathbf{v}|}$

- d) none of these.
- xii) FACTS devices control
 - a) both active and reactive powers
 - b) reactive power only
 - c) loadability of lines
 - d) both (a) and (c).

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. Why do small oscillations appear in power system network? What are the main governing factors in generating small oscillations? 2+3

SE-100

- 3. Explain the mechanism of the line oscillations.
- 4. Write a short note on modelling of electical loads.
- 5. What do you mean by voltage stability? Define voltage stability limit.
- 6. Define FACTS controllers. Mention the advantages of FACTS devices.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. A generator supplies power in steady state to an infinite bus (fig. 1 on Page 6). Due to some contingencies line 2 gets tripped. Find the following :
 - i) Damped frequency of oscillation
 - ii) Damping ratio
 - iii) Undamped natural frequency and
 - iv) Eigenvalues.

For different damping co-efficients like 0, 5 and - 5, the p.u. values of the given system on a 1500 MVA, 25 kV base are as follows:

$$P=1~p.u.,~Q=0.3~p.u.,~V=1~\angle 17^{\circ},~E_{0}=0.99~\angle 0^{\circ},$$
 $\mid x~L_{1}\mid =\mid x~L_{2}\mid =0.5,~|xtr\mid =0.2,~|xd^{I}\mid =0.25,$ $H=3~MWS/mVA,~f=50~Hz.$

All voltage magnitudes and reactances are expressed in p.u.

Fig. 1

8. For an uncompensated long transmission line show that reactive power requirement is governed by QR = -QS under certain simplifying assumptions. Hence, show that at SIL reactive power flow becomes zero.

SE-100 6

- Derive an expression of receiving end bus voltage and power 9. angle at voltage stability limit.
- 10. Develop the concept of dynamic compensation at the middle of a transmission line.

7

[Turn over

SE-100