	Utech
Name:	
Roll No.:	O Danie (y Exercising Seal Explored
Invigilator's Signature :	• • • • • • • • • • • • • • • • • • • •

ADVANCED HIGH VOLTAGE ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) Average electrical field is the magnitude of electrical field
 - a) at mid-point between conductors
 - b) ratio of potential difference to the distance between the conductors
 - c) at surface of the lower potential electrode
 - d) ratio of potential difference to half the distance between the conductors.

8218 [Turn over

- ii) An experimental method for computing the field distribution is
 - a) solution of Laplace equation
 - b) electrolytic tank method
 - c) digital simulation
 - d) field intensity method.
- iii) Field enhancement factor is the ratio of
 - a) maximum field to average field
 - b) rms value to electric field to average value
 - c) potential difference to radius of the conductor
 - d) electric field at the surface of the h.v. conductor to electric field at ground conductor.
- iv) A unique feature of the Boundary Element Method is that
 - a) it can be used for electric fields which are uniform only
 - b) it can be used only with bounded fields
 - electric field is proportional to the charge densities
 on an enclosed electrode which is simulated by
 real charges
 - d) none of these.

- b) with fields which are unbounded
- with fields which are both bounded and c) unbounded
- when high accuracy is not required. d)
- A comparison of the accuracies of various computational vi) methods shows a good agreement between the results of
 - FEM and FDM a)

v)

a)

- FDM and BEM b)
- c) FEM and CSM
- d) BEM and FEM.
- Corona discharge is vii)
 - a) an internal discharge
 - b) surface discharge
 - a spark between conductors c)
 - d) partial discharge around a high voltage conductor.

- viii) Partial discharge magnitude is
 - a) quantity of charge measured at the terminals of the specimen
 - b) quantity of charge inside a specimen
 - c) voltage across the terminals of a specimen
 - d) average current through the terminals of the specimen.
- ix) Partial discharge detector is a device that measures or detects
 - a) a partial discharge
 - b) corona discharge
 - c) leakage current
 - d) fault current.
- x) A simple partial discharge detector circuit consists of a power unit and a
 - a) coupling capacitor and test capacitor
 - b) coupling capacitor, test capacitor, measuring impedance and detector
 - c) test capacitor, measuring impedance and a detector
 - d) test capacitor, calibrating unit and detector.

8218 4

- xi) The discharge energy in a partial discharge in terms of discharge magnitude q and inception voltage v is
 - a) q_{vi}

b) $0.707 q_{vi}$

c) $0.5 q_{vi}$

d) $1.414 q_{vi}$

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Explain the difference between photo-ionization and photo-electric emission.
- Discuss the advantages and limitations of Charge Simulation method.
- 4. How would you measure dielectric constant and loss angle for a cable ?
- 5. How would you measure resistivity of a dielectric?
- 6. What are formitive and statistical time lags? Explain.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 7. What is PD? Find out the relation between measured charge and apparent charge in case of a PD. Draw the PD equivalent circuit for a cavity within a dielectric. Write down the different techniques of PD measurement. 2 + 7 + 3 + 3
- What are the different types of voltage dividers used in HV laboratory? Describe the method of impulse voltage measurement with the help of such dividers with proper mathematical analysis.
 3 + 12
- a) Draw the circuit diagram and explain the principle and operation of Cockroft-Walton cascade rectifier circuit for generation of high d.c. voltage.
 - b) Derive an expression for the voltage drop in a loaded Cockcroft-Walton voltage multiplier circuit. Also, derive the expression for the ripple voltage. 3 + 6 + 6
- 10. Explain the mechanism involved in the breakdown of vacuum.

8218 6

- 11. Write short notes on any thee of the following:
 - a) Electron attachment and its role in the breakdown of electronegative gases.
 - b) Voltage measurement by sphere gaps.
 - c) Determination of front and tail time of lightning impulse wave as per I.S.
 - d) Generation of high impulse current.
 - e) Discharge characteristics of a rod-plane gap in air.

8218 7 [Turn over