
 Name :
 Roll No.
 \qquad
 \qquad
 viech
 Invigilator's Signature :
 \qquad
 CS /B.TECH(EE) /SEP.SUPPLE/SEM-7 /EE-703/2012 2012
 UTILISATION OF ELECTRIC POWER

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Guestions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Candela is the unit of
a) Luminous flux
b) Luminous intensity
c) Brightness
d) Luminous efficiency.
ii) In filament lamps, coiled coil filaments are used in
a) coloured lamps
b) gasfilled lamps
c) low wattage lamps
d) higher wattage lamps.

CS/B.TECH(EE)/SEP.SUPPLE/SEM-7/EE-703/2012

iii) Which of the following is present inside the flyoreseent tube?
a) Helium and Oxygen
b) Argon and Neon
c) Argon and Carbon dioxide
d) Mercury vapour.
iv) In case of a fluorescent lamp if only the ends of the lamp remain lighted it indicates
a) short circuited starter
b) a defective choke
c) a defective tube
d) wrong wiring.
v) The average life of sodium lamps is around
a) 1000 hours
b) 2500 hours
c) 6000 hours
d) 10000 hours.
 sustain voltage fluctuations?
a) Sodium vapour lamp
b) Incandescent lamp
c) Fluorescent lamp
d) Mercury vapour lamp.
vii) The speed-time curve for urban service has no
a) costing period
b) free running period
c) breaking period
d) acceleration period.
viii) For tramways the return circuit is completed through
a) common earthing
b) neutral wire
c) special cable
d) track rails.

CS/B.TECH(EE)/SEP.SUPPLE/SEM-7/EE-703/2012

a) 1 / speed
b) speed
c) $\quad(\text { speed })^{3}$
d) $\quad(\text { speed })^{2}$.
x) Long distance railways operate on
a) $600 \mathrm{~V} D C$
b) 15 kV three phase $A C$
c) 25 kV three phase $A C \mathrm{~d}) 25 \mathrm{kV}$ single phase AC .
xi) The supply frequency usually employed for high frequency eddy current heating is
a) $\quad 10 \mathrm{MHz}$
b) 5 kHz
c) $\quad 1 \mathrm{kHz}$
d) $\quad 10 \mathrm{kHz}$ to 400 kHz .
xii) The normal voltage used in dielectric heating is
a) 1.5 kV
b) 15 kV
c) $\quad 33 \mathrm{kV}$
d) 66 kV .
xiii) In an electric arc welding the voltage required to strike $D C$ arc is about
a) $50-60 \mathrm{~V}$
b) $80-90 \mathrm{~V}$
c) $100-120 \mathrm{~V}$
d) 230 V .

a) fraction of a minute
b) fraction of a second to several seconds
c) few milliseconds
d) few microseconds.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. Define crest speed, average speed and schedules speed of an electric locomotive
3. What is stroboscopic effect ? Draw relevant diagrams to illustrate and explain how this effect can be overcome.
4. What is glare ? How is it produced ? Suggest a few measures to minimise the glare.
5. Explain why neutral section is provided in the OHE in $A C$ traction system and not in $D C$ traction system.
6. Write a brief note on different types of resistance welding.
7. a) State the laws of illumination.
b) Explain the factors to be taken into account for designing schemes for :
(i) stadium lighting
(ii) highway lighting
(iii) shop window.
c) Design the lighting scheme of a hall measuring $20 \mathrm{~m} \times$ 50 m which is to e illuminated with 45 lux. The following data may be used.

Mounting height from the working plane $=3$ metre, Utilisation factor $=0 \cdot 65$, Depreciation factor $=1 \cdot 3$. The lamps are to be chosen from the following groups :

Rating (W)	75	100	150	200
Total lumens	800	1200	2000	2800

Calculate the number of lamps of each type. $4+3+8$

8. a) Why is $A C$ preferred to $D C$ system for supplying power to electric traction?
b) Draw and explain typical speed-time curve for train improvement for suburban service and mainline service.
c) An electric train has an average speed of $42 \mathrm{~km} / \mathrm{hr}$ on a level track between stops 1.4 km apart. It is accelerated at 1.7 kmphps and is braked at 3.3 kmphps . Assume tractive resistance is $50 \mathrm{~N} / \mathrm{T}$, allowing 10% for rotational inertia and motor efficiency 85%, estimate the specific energy consumption.
$4+4+7$
9. a) What is the basic difference between resistance welding and arc welding?
b) What are the factors which limit the choice of frequency in dielectric heating ?
c) Explain the principle of induction heating.
d) Estimate the energy required to melt 500 kg of brass in a 1-phase Ajax-Wyatt furnace. If the melt is to be carried out in $3 / 4 \mathrm{hr}$, what must be the average power input to the furnace?

CS/B.TECH(EE)/SEP.SUPPLE/SEM-7/EE-703/2012

Latent heat of fusion of brass $=163 \times 10^{3} \mathrm{~J} / \mathrm{kg}$
Melting point of brass $=920^{\circ} \mathrm{C}$
Initial temperature of brass $=20^{\circ} \mathrm{C}$
Furnace efficiency $=70 \%$.
$2+2+4+7$
10. a) Draw a neat sketch of high pressure sodium vapour lamp and label its different parts.
b) Explain the working principle of the above lamp. $10+5$
11. Write short notes on any three of the following :
a) Regenerative braking of electric moors
b) Mercury vapour lamp
c) Halogen lamp
d) TIG welding
e) Coreless induction furnace
f) Microwave oven.

