	Utech
<i>Name</i> :	
Roll No.:	The same of the same and the sa
Invigilator's Signature:	

CS/B.Tech/EE/NEW/SEM-6/EE-601/2013

2013 **CONTROL SYSTEMS-II**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- the correct alternatives for any ten of the Choose following: $10 \times 1 = 10$
 - The state equation of a linear system is given by $\dot{X} = AX + BU$ where $A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The state transition matrix of the system is

a)
$$\begin{bmatrix} e^{2t} & 2 \\ 0 & e^{2t} \end{bmatrix}$$

a)
$$\begin{bmatrix} e^{2t} & 2 \\ 0 & e^{2t} \end{bmatrix}$$
 b)
$$\begin{bmatrix} e^{-2t} & 0 \\ 0 & e^{-2t} \end{bmatrix}$$

c)
$$\begin{bmatrix} \sin 2t & \cos 2t \\ -\cos 2t & \sin 2t \end{bmatrix}$$
 d) $\begin{bmatrix} \cos 2t & \sin 2t \\ -\sin 2t & \cos 2t \end{bmatrix}$.

d)
$$\begin{bmatrix} \cos 2t & \sin 2t \\ -\sin 2t & \cos 2t \end{bmatrix}$$

- The inverse Z-transform of the function $\frac{T_z}{(z-1)^2}$ is ii)
 - KTa)

 $(KT)^2$ b)

c) e^{-KT}

d) 1.

a) 1

b) 5

c) 0

d) 7.

iv) For the state variable equation
$$\dot{X} = AX + BU$$
, $Y = CX + DU$, the transfer function is

- a) $D + C(SI A)^{-1}B$
- b) $B (SI A)^{-1}C + B$
- c) $B(SI A)^{-1}B + C$
- d) $B(SI A)^{-1}D + B$.
- v) The number of state variables required to describe a series R–L–C network is
 - a) 1

b) 2

c) 3

- d) 0.
- vi) The property satisfied by a state transition matrix is
 - a) $\phi(0) = 1$
- b) $\phi^{-1}(t) = \phi(t)$
- c) $\left[\phi(t) \right]^k = \phi(-kt)$
- d) $\phi(t) \cdot \phi^T(t) = I$.
- vii) If the eigenvalues of a second order system are real, equal in magnitude and opposite in sign then the origin in the phase portrait is termed as
 - a) the nodal point
- b) the focus
- c) the saddle point
- d) critical point.
- viii) The transfer function of a zero order hold is

a)
$$\frac{1-e^{-st}}{s}$$

b)
$$\frac{1+e^{-st}}{s}$$

c)
$$\frac{1+e^{st}}{s}$$

d)
$$\frac{1-e^{st}}{s}$$
.

- ix) An anti-aliasing filter is a
 - a) Band pass filter
 - b) Band reject filter
 - c) Low pass filter
 - d) High pass filter.

x) The Z-transform of a signal is given by

$$C(z) = \frac{1}{4}z^{-1}\left(1-z^{-4}\right)\frac{1}{(1-z^{-1})^2}$$

Its final value will be

a) $\frac{1}{4}$

b) zero

c) :

- d) ∞ (infinity).
- xi) The z-transform of the function $\frac{1}{s+1}$ is
 - a) $\left(\frac{z}{z-e^{-T}}\right)$
- b) $\frac{z^2}{(z e^{-T})}$
- c) $\frac{z}{(z-e^T)}$
- d) $\frac{z}{(z+e^{-T})}$.
- xii) The inverse Z-transform of the function $\frac{T_z}{(z-1)^2}$ is
 - a) KT

b) $(KT)^2$

c) e^{-KT}

- d) e^{KT} .
- xiii) For the difference equation x[k+2]+4x[k+1]+5x[k]=0, the initial condition are x[0]=0, and x[1]=1. The value of x[2] is
 - a) 4

b) 3

c) -4

d) -9.

CS/B.Tech/EE/NEW/SEM-6/EE-601/2013

xiv) In the following set of equations identify the non-linear systems

(A)
$$\frac{d^3y(t)}{dt^3} + t^2 \cdot \frac{d^2y(t)}{dt^2} + \frac{dy}{dt} = 40 \sin \omega t$$

(B)
$$\frac{d^2y(t)}{dt^2} + \frac{1}{t}\frac{dy}{dt} + y = 4e^{-t}$$

(C)
$$\left\{ \frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} \right\}^2 + \frac{\mathrm{d}y(t)}{\mathrm{d}t} + y = 5t$$

(D)
$$\frac{d^2y(t)}{dt^2} + ty^2 = e^{-2t}$$
.

- a) A and B
- b) C only
- c) C and D
- d) all of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. For the following system, obtain the state space equation.

$$\left(\frac{\mathrm{d}^3 y}{\mathrm{d}t^3}\right) + 6\left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}\right) + 11\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) + 6y = u$$

where y = output and u = input.

3. Solve the difference equation

x[n+2]+3x[n+1]+2x[n]=u[n]. The initial conditions are x[0]=0, x[1]=1.

4. Compute the *Z*-transform of the function

$$x(t) = A \sin \omega t u(t)$$

6108

5. a) For the dynamic system given by the state space equation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \text{ formulate}$$

the Lyapunov function to test the asymptotic stability of the system.

- b) State Lyapunov's theorem on stability. 4 + 1
- 6. Consider a system given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Check for the state controllability.

7. For the mechanical system shown in the figure below, obtain the state model in standard form, with the velocity of M_2 as the output :

8. Draw the phase plane plot of a system described by $\dot{x} = x^3 - x$.

GROUP - C

(Long Answer Type Questions)

- 9. a) Find out the describing function for a practical relay. Explain how a stable and unstable limit cycle can be determined using Nyquist method.
 - b) Consider the system shown below. Using the describing function method, investigate the possibility of a limit cycle in the system:

10. a) Write the state equation for the circuit below:

b) Determine the state feedback gain matrix, so that closed loop poles of the following linear system are located at -2, -5 and -6.

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -30 & -11 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u (t), \ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x.$$

7 + 8

6108

11. Determine x (k) of the system, given by the following equation. Where $x_1(0) = 1$ and $x_2(0) = 1$.

$$x(k+1) = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

12. a) Find the sampled data system function for the figure below:

- b) Obtain the final value of C (KT) for a unit step input with sampling period = $1 \sec$. 9 + 6
- 13. Write short notes on any *three* of the following: 3×5
 - a) Jump resonance
 - b) Anti-aliasing filter
 - c) Different types of singular points
 - d) Harmonic linearisation
 - e) Dead zone type non-linearity and its effect on stability of a system
 - f) Shannon's sampling criterion.