	Uffech
Name:	
Roll No.:	O Dear of Samuely and Saland
Invigilator's Signature :	

CS/B.Tech(EE-OLD)/SEM-4/ME(EE)-411/2012 2012

THERMAL POWER ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) Bomb calorimeter is used to determine the calorific value of
 - a) solid fuels only
 - b) liquid fuels only
 - c) solid as well as liquid fuels
 - d) gaseous fuel.

4104 (O) [Turn over

CS/B.Tech(EE-OLD)/SEM-4/ME(EE)-411/2012

For a steam nozzle with inlet & outlet pressure p_1 ii) p_2 , the mass flow rate per unit area is maximum if

a)
$$\frac{p_1}{p_2} \le \left(\frac{2}{n+1}\right)^{\frac{n}{n+1}}$$

b)
$$\frac{p_2}{p_1} \le \left(\frac{1}{n+1}\right)^{\frac{n}{n+1}}$$

c)
$$\frac{p_2}{p_1} \le \left(\frac{2}{n-1}\right)^{\frac{n}{n-1}}$$

d)
$$\frac{p_2}{p_1} \le \left(\frac{1}{n+1}\right)^{\frac{n+1}{n}}$$
.

- The pressure on the two sides of the impulse wheel of iii) steam turbine
 - is same a)
 - b) is different
 - c) decreases from one side to the other
 - d) increases from one side to the other.
- For maximum blade efficiency of Parson's reaction iv) steam turbine

a)
$$\frac{V_b}{V_i} = \cos \alpha$$
 b) $\frac{V_b}{V_i} = \frac{\cos \alpha}{2}$

b)
$$\frac{V_b}{V_i} = \frac{\cos \alpha}{2}$$

c)
$$\frac{V_b}{V_i} = \cos^2 \alpha$$

c)
$$\frac{V_b}{V_i} = \cos^2 \alpha$$
 d) $\frac{V_b}{V_i} = \frac{\cos^2 \alpha}{2}$.

v) Draught produced by chimney is described as

4104 (O)		3		[Turn over
	c)	10 to 18	d)	14 to 22.
	a)	4 to 6	b)	6 to 12
viii)	Con	npression ratio of S.I. e	ngine	s normally varies from
	d)	decreasing piston spe	eds.	
	c)	increasing piston spee	eds	
	b)	increasing the inlet va	lve di	ameter
	a)	increasing cylinder dia	ı	
	for f	our stroke I.C. engines	by	
vii)	The	maximum volumetric	effici	iency can be increased
	c)	Brayton cycle	d)	Stirling cycle.
	a)	Cannot cycle	b)	Rankine cycle
vi)	Basi	ic closed cycle for gas t	urbin	ne is
	c)	forced draught	d)	balance draught.
	a)	induced draught	b)	natural draught

CS/B.Tech(EE-OLD)/SEM-4/ME(EE)-411/2012

- ix) For the same compression ratio
 - a) Otto cycle is more efficient than diesel cycle
 - b) efficiency of both are same
 - c) diesel cycle is more efficient than Otto cycle
 - d) none of these.
- x) Ignition quality of diesel engine fuel is expressed by an index called
 - a) octane number
 - b) cetane number
 - c) C.V.
 - d) auto-ignition temperature.
- xi) Ignition quality of petrol engine fuel is expressed by an index called
 - a) cetane number
 - b) octane number
 - c) auto-ignition temperature
 - d) C.V.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) How are fuels classified?
 - b) How can you distinguish secondary fuels from the primary ones?
 - c) How does the volatile matter content determine the rank of coal ?
 - d) How does sulphur occur in coal?
 - e) What is the effect of volatile matter in the combustion process ? 1+1+1+1+1
- 3. a) Draw neat diagrams to represent schematically:
 - i) Natural circulation
 - ii) Forced multiple circulation
 - iii) Open hydraulic system
 - iv) Combined circulation.
 - b) What is the combustion efficiency of PFBC boilers?

4 + 1

- 4. What are the pollutants in the automotive engine exhaust? How are they controlled?
- 5. Describe briefly the working principle of an ESP with a neat sketch.
- 6. Derive an expression of power required at the blade to run a steam turbine.

GROUP - C

(Long Answer Type Questions).

Answer any three of the following.

- 7. a) Show with usual notations that the thermodynamic efficiency of a constant pressure closed gas turbine is given by $\eta_{th}=1-\left(\frac{1}{R_{\rho}}\right)^{\frac{\gamma-1}{\gamma}}$.
 - b) An open cycle gas turbine works between the pressure range of 1 bar & 6 bar & temperature range of 300 K & 1023 K. The C_v of the fuel used is 43000 kJ/kg. Find the following :
 - i) A: F ratio
 - ii) Thermal efficiency of the plant
 - iii) kW generating capacity of the plant if the flow of air is 10 kg/sec. 7 + 8
- 8. a) What is a valve timing diagram? Explain the terms 'preignition' and 'delay period'.
 - b) Calculate the relative efficiency on IP basis and a:f ratio used for a 4-stroke gas engine developing 3.5 kW of BP at 160 rpm & at full load, assuming $\eta_v=87\%$, $\eta_{mech}=73.5\%$

$$V_c = 2100 \text{ cu.cm}$$
 $V_s = 9000 \text{ cu.cm}$

Fuel consumption 5 cu.m/hr,

 C_v of fuel = 18000 kJ/hr and all working cycles are effective. 6 + 9

- 9. a) Write the steps of Morse test to find the IP of an I.C. engine.
 - b) Give schematically the working principle of Zenith carburettor.
 - c) Explain the term 'knock rating' of fuel. 5 + 5 + 5
- 10. a) Show that for maximum discharge of steam through nozzle takes place when the ratio of steam pressure at throat to the inlet pressure is given by

$$\frac{p_2}{p_1} = \left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$$

- b) What are the limitations of chimney draught?
- c) Give a schematic arrangement for the gas analysis.

7 + 4 + 4

- 11. a) Define compounding as used in turbine. Explain clearly velocity compounding & pressure compounding with sketch.
 - b) A steam power plant has the range of operation from 40 bar dry saturated to 0.5 bar. Determine the cycle efficiency of the turbine. 7+8