	Utech
Name:	
Roll No.:	A disease of Knowledge and Explane
Invigilator's Signature :	

CS/B.Tech (EE-New)/SEM-4/EE-402/2010 2010

ELECTROMAGNETIC FIELD THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The vector identity of $\square \infty (\square \infty \stackrel{\frown}{A})$ is
 - a) \Box (\Box . $\overset{\circ}{A}$) $-\Box^2\overset{\circ}{A}$
 - b) \square . $(\square \propto \stackrel{\frown}{A})$ $-\square^2 \stackrel{\frown}{A}$
 - c) $\square \propto \stackrel{\bigcirc}{A} \square^2 \stackrel{\bigcirc}{A}$
 - d) $\square \infty (\square \widetilde{A}) \square^2 \widetilde{A}$.

4155 [Turn over

CS/B.Tech (EE-New)/SEM-4/EE-402/2010

ii) The expression of $\Box V$ (r, θ) in $r-\theta$ co-ordinate is

a)
$$\partial \frac{\partial v}{\partial x} + \partial \frac{\partial v}{\partial y} + \partial \frac{\partial v}{\partial z}$$

b)
$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

c)
$$\frac{\partial v}{\partial r} \overset{\varnothing}{u}_r + \frac{\partial v}{r d\theta} + \overset{\varnothing}{u}_{\theta}$$

d)
$$\frac{\partial v}{\partial r} \overset{\varnothing}{u}_r + \frac{\partial v}{\partial \theta} \overset{\varnothing}{u}_{\theta}$$

iii) In a perfect dielectric, the wavelength of E.M. wave is

a)
$$\lambda = \frac{2\pi}{\sqrt{\mu \square}}$$

b)
$$\lambda = \frac{1}{\sqrt{\mu \square}}$$

c)
$$\lambda = \frac{\omega}{\sqrt{\mu \Box}}$$

d)
$$\lambda = \frac{2\pi}{\omega\sqrt{\mu ||}}$$
.

where μ = permeability of the medium

 \square = permittivity of the medium

 ω = angular frequency.

iv) Relation among magnetic vectors $\stackrel{\bigcirc}{B}$, $\stackrel{\bigcirc}{M}$ & $\stackrel{\bigcirc}{H}$ is

a)
$$\stackrel{\bigcirc}{B} = \mu_o \stackrel{\bigcirc}{H} + \stackrel{\bigcirc}{M}$$

b)
$$\overrightarrow{B} = \mu \overrightarrow{H} + \overrightarrow{M}$$

c)
$$\stackrel{\bigcirc}{H} = \mu \stackrel{\bigcirc}{B} + \stackrel{\bigcirc}{M}$$

d)
$$\stackrel{\bigcirc}{H} = \frac{\stackrel{\bigcirc}{B}}{\mu_0} - \stackrel{\bigcirc}{M}$$
.

- v) The potential V due to an electric dipole located at a distance 'r' from the dipole
 - a) varies directly as r
 - b) varies inversely as r
 - c) varies inversely as r^2
 - d) varies inversely as r^3 .
- vi) The integral $\oint \vec{E} \cdot d\vec{\rho} = 0$, if the electric field \vec{E} is caused by
 - a) a static charge
 - b) a time varying magnetic field
 - c) moving charge
 - d) magnetic dipole.
- vii) One tesla is equal to
 - a) 10 ⁶ gauss
- b) 1 gauss
- c) 10⁻⁴ gauss
- d) 10^4 gauss.
- viii) Electric potential & electric field intensity inside a spherical shell are
 - a) zero & constant respectively
 - b) both inversely proportional to radius
 - c) constant & zero respectively
 - d) zero & zero respectively.

CS/B.Tech (EE-New)/SEM-4/EE-402/2010

- ix) The direction of force on a conductor carrying current in the positive Y-axis & placed in magnetic field directed in positive X-axis, will be
 - a) positive *Z*-axis
- b) negative *Z*-axis
- c) negative X-axis
- d) negative Y-axis.
- x) A Gaussian surface is
 - a) an open surface
 - b) a closed surface
 - c) a semi-open surface
 - d) all of these.
- xi) Gradient of scalar function results in
 - a) vector function
- b) scalar function
- c) periodic function
- d) peak function.
- xii) Poynting vector has the unit
 - a) W m $^{-2}$
- b) $J s^{-1}$

c) W

d) $J m^{-2}$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. Develop an expression of $\stackrel{\bigcirc}{E}$ at (0, 0, 5) m due to $Q_1 = 0.35 \,\mu\text{C}$ at (0, 4, 0) $m \,\&\, Q_2 = -0.55 \,\mu\text{C}$ at (3, 0, 0) m.
- 3. Given an electric flux density $D = 2x \frac{8}{a}x + 3 \frac{8}{a}y$ (C / m²), determine the net flux crossing the surface of a cube 2 m on an adge centered at origin. (the edges of the cube are parallel to the co-ordinate axis).
- 4. Find $\overset{\varnothing}{H}$ on the axis of a circular loop of radius a.
- 5. Find the force per unit length on two long, straight, parallel, conductors, if each carries a current of 10 A in the same direction & the separation distance is 0.2 m.
- 6. Differentiate between magnetic scalar potential & magnetic vector potential.
- 7. State how transformer *emf* differs from motional *emf*. Derive the necessary expressions. 2 + 3

(Long Answer Type Questions) Answer any *three* of the following.

8. Show that the electric field is conservative. Derive the relation $\stackrel{\frown}{E} = -\stackrel{\frown}{\coprod} V$. The symbols has usual meaning.

3 + 3

- b) State divergence theorem. Find the divergence of the electric flux density $\stackrel{\textstyle olimits}{D}$. Why is the divergence of the magnetic flux density B always zero? 2 + 5 + 2
- State & explain Ampere's law of magnetostatics. Explain 9. a) how this law is modified by introduction of displacement 3 + 5current.
 - Obtain an expression for the energy density in an b) electrostatic field. 7
- Obtain the Poynting theorem for conservation of energy 10. a) electromagnetic fields & discuss the physical meaning of each term in the resulting equation.
 - An EM wave travels in free space with electric field b) component

$$E = \left(10 \stackrel{\text{\ensuremath}\ensuremath}\ensuremath}\ensuremath}}}$$

6

Determine:

- (i) ω&λ
- the magnetic field component
- (iii) the time average power in the wave. 2 + 2 + 3

4155

- 11. a) Write & interpret two Maxwell's equations relating to $\stackrel{\smile}{B}$.
 - b) Explain the importance of propagation constant (γ) & charactertic impedance (z_0) of a transmission line. State the conditions for lossless & distortionless transmission line.
 - c) Why is it desirable to achieve an impedance match in a transmission line?
- 12. a) The parallel conducting disks shown in the figure are separated by 5 mm and contain a dielectric for which $\Box_r = 2 \cdot 2$. Determine the charge densities on the disk.

Dia.

- b) Explain the method of images for solving electrical problems.
- c) Write a note on continuity equation. 3

7