	Utech
Name:	
Roll No.:	In Spring (I) Executing and Explana
Invigilator's Signature :	

CS/B.Tech (EE-N)/SEM-4/EE-401/2011 2011 ELECTRICAL MACHINE – I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

 $1. \quad \hbox{Choose the correct alternatives for any $\it ten$ of the following:}$

 $10 \times 1 = 10$

- i) The armature reaction m.m.f. is a d.c machine is
 - a) sinusoidal
 - b) trapezoidal
 - c) rectangular
 - d) triangular.
- ii) For maximum starting torque in an induction motor
 - a) $r_2 = 0.5x_2$
- b) $r_2 = x_2$
- c) $r_2 = 2x_2$
- d) $x_2 = 0$.

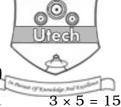
4205 [Turn over

CS/B.Tech (EE-N)/SEM-4/EE-401/2011

	•	,, ,	•		Utech
iii)	The	material used	d for brush	ı is	(4)
	a)	graphite		b)	aluminium
	c)	mica		d)	wood.
iv)		armature co	ore of a d	l.c m	achine is laminated to
	a)	Hystousis lo	ss	b)	Eddy current loss
	c)	Copper loss		d)	Mechanical loss.
v)		number of pa al to	arallel patl	hs for	a simple lap winding is
	a)	Number of p	oles		
	b)	2.0			
	c)	Number of p	air of pole	:s	
	d)	None of thes	e.		
vi)	The	motor used in	n a lift of a	a high	rise building is
	a)	d.c. series m	otor		
	b)	d.c. shunt m	otor		
	c)	d.c. compou	nd motor		
	d)	a.c.synchron	nous moto	r.	
vii)	A desi	delta-zigzag ignated as	three-ph	ase	transformer can be
	a)	DZO		b)	DZI
	c)	DZII		d)	none of these.
5			2		

- viii) In a properly connected delta winding of a 3 phase transformer, a voltmeter connected by opening a node of delta will show
 - a) zero voltage
 - b) line voltage
 - c) double the voltage per phase
 - d) phase voltage
 - e) none of these.
- ix) A 3 phase, 400 V, 4 pole induction motor is fed from a 3 phase, 400 V, 50 H, supply and runs at 1440 r.p.m. The frequency of the rotor cmf is
 - a) 2.0 Hz

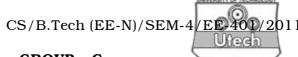
b) 50 Hz


c) 48 Hz

- d) 0 Hz.
- x) Tertiary winding is used in transformer connected in
 - a) Delta/Delta
- b) Delta/Star
- c) Star/Star
- d) Star/Zig-Zig.
- ix) At 50 Hz, the speed of the rotating Magnetic field for4 pole 3 phase induction motor is
 - a) 1500 r.p.m.
- b) 3000 r.p.m.
- c) 750 r.p.m.
- d) none of these.

CS/B.Tech (EE-N)/SEM-4/EE-401/2011

GROUP - B (Short Answer Type Questions)


Answer any three of the following.

- 2. What is armature reaction in a d.c machine? How does it affect commutation? What steps are taken to have effective commutation?
- 3. Explain the phenomena cogging and crawling of a 3 phase squirrel cage induction motor.
- 4. Derive the torque equation of a d.c. series motor. Sketch the speed torque characteristics of a d.c. series motor after deriving the necessary relation.
- State and explain the conditions of parallel operation of two
 3 phase transformers.
- 6. Explain the operation of a single phase induction regulator.

 Why is a compensating winding used in a single phase induction regulator and why is it not used in 3 phase?

4205 4

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 7. Draw the phaser diagram and connection diagram of the following three phase transformer groups : 5×3
 - a) Dy 1
 - b) Dz 6
 - c) Yz 11
 - d) Dz 6
 - e) Dd 6.
- 8. a) Show that when the magnetising current of a transformer is sinusoidal, the flux produced is non sinusoidal and when the magnetising current is non sinusoidal, the flux is produced is sinusoidal.
 - b) Show that third harmonic current and its multiples are co-phasal.
 - c) Show that when the flex is non-sinusoidal, the effect of harmonics is more pronounced on voltage induced.
 - d) Explain the use of tertiary winding in a star-star transformer. 6+3+3+3

CS/B.Tech (EE-N)/SEM-4/EE-401/2011

- 9. a) Why is starter used for starting a d.c. motor?
 - b) Sketch a 3 point starter with proper label.
 - c) Derive a relation for determining the starter steps.
 - d) State and explain Ward-Leonard method of speed control. 2 + 5 + 5 + 3
- 10. a) Describe the different losses in a d.c. machine.
 - b) Two identical d.c. shunt machines when tested by Hopkinson's method, gave the following data :

Line voltage 230 V; Line current excluding both the field current 30A; Motor armature current 230 A, Field currents 5 A and 4 A. If the armature resistance of each machine (including brushes) is 0.025 ohms, calculate efficiencies of both the machines.

c) State the advantages of Hopkinson's test over Swinburn test.

4205

- 11. a) Explain how a synchronously rotating magnetic field with constant magnitude is produced in a 3-phase induction motor when a balanced 3-phase supply is applied to its balanced 3-phase stator winding.
 - b) A 3 phase, star connected, 400 Volts, 50 Hz, 4 pole induction motor has the following per phase constants in ohms referred to stator:

$$r_1 = 0 \cdot 15, \; x_1 = 0 \cdot 45, \; r_2 = 0 \cdot 12, \; x_2 = 0 \cdot 45, \; xm = 28 \cdot 5.$$

Fixed losses (Core, Friction and Windage) are 400 Watts.

Calculate the stator current, rotor speed and output torque of the motor when it is operated at rated voltage, frequency and at 4 percent slip. 8+7

4205 7 [Turn over