
 Name :
 Roll No. :
 \qquad
 \qquad
 CS/B.TECH(EE-OLD)/SEM-3/CS-312/2011-12 2011

 NUMERICAL METHODS AND PROGRAMMING

 NUMERICAL METHODS AND PROGRAMMING}

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
i) The number of significant digits in $0 \cdot 04505910$ is
a) 8
b) 7
c) 6
d) 5
ii) Overflow occurs due to
a) division by a very large number
b) division by a very small number
c) both (a) and (b)
d) none of these.
iii) The rate of convergence of secant method is
a) 2
b) 1
c) $0 \cdot 62$
d) 1.62
iv) If $f(x)$ be a polynomial of degree n, then
a) $(n+1)^{\text {th }}$ order forward difference exists
b) $(n-1)^{\text {th }}$ order forward difference exists
c) $n^{\text {th }}$ order forward difference exists
d) none of these.
v) Which of the following does not always guarantee convergence?
a) Bijection method
b) Newton-Raphson method
c) Regula-falsi method
d) none of these.
vi) If $f(x)=\frac{1}{x}$ then divided difference [a, b, c] is
a) $\frac{1}{a}-\frac{1}{b}-\frac{1}{c}$
b) $\left(\frac{1}{a}-\frac{1}{b}\right)-\left(\frac{1}{b}-\frac{1}{c}\right)$
c) $\frac{1}{a b c}$
d) $\left(\frac{1}{a}-\frac{1}{b}\right)+\left(\frac{1}{b}-\frac{1}{c}\right)$
vii) Which of the following relations is true ?
a) $\Delta=E-1$
b) $\Delta, \nabla=\Delta-\nabla$
c) $\Delta, \nabla=\Delta+\nabla$
d) $\Delta=1-E$
```
                                    CS / B.TECH(EE-OLD)/SEM-3/CS-312/2011-12
                                    Unesh
                                    viii) In Simpson's }\frac{1}{3}\mathrm{ rd rule the portion of the eurve in the
                                    interval [ }\mp@subsup{x}{i-1}{},\mp@subsup{x}{i+1}{}]\mathrm{ ] is replaced by
```

a) straight line
b) parabola
c) hyperbola
d) a cubic polynomial.

```
ix) What will be the output of the following program segment?
main ()
\{
int \(\mathrm{x}, \mathrm{y}, \mathrm{z}\);
\(\mathrm{x}=7 ;\)
\(y=x++;\)
\(z=++;\)
prinf ("\%d, \%d", y, z)
\}
```

a) 7,8
b) 7,9
c) 8,9
d) none of these.
x) Which of the following statements is / are false \&
A. Gaussian elimination method is a direct method
B. Gaussian elimination method has a computational complexity $\mathrm{O}\left(\mathrm{n}^{3}\right)$
C. Gaussian elimination method solves any system of linear simultaneous equations
D. Gaussian elimination method reduces the coefficient matrix in upper triangular form.
a) (C) only
b) both (B) and (C)
c) (B) only
d) all are true.
xi) Consider the following program segment :
for ($\mathrm{i}=1$, sum $=0 ; \mathrm{i} \leq 10 ; \mathrm{i}++$)
\{
scanf ("\%d", \& x) ;
if ($\mathrm{x}<0$) continue ;
sum + = x ;
\}
The value of "sum" with input $1,-2,-3,2,4,-3,5,1,3,-1$ is
a) 5
b) 1
c) $\quad 16$
d) 7
xii) Truncation error associated with Runge-Kutta 4th order formula is of the order of
a) $\quad h^{2}$
b) h^{3}
c) $\quad h^{4}$
d) h^{5}

2. Solve the following system of linear simultaneous equations by Gaussian elimination method.
$2 x+y+4 z=16$
$3 x+2 y+z=10$
$x+3 y+3 z=16$.
3. Find a root of the following non-linear equation corrected up to 3 decimal places.
$x^{3}-2 x-5=0$

Take $x_{0}=1$ and $x_{1}=2$
4. Evaluate $\int_{0}^{1} \frac{1}{1+x} \mathrm{~d} x$ using Simpson's $\frac{1_{\text {rd }}}{3}$ rule.

Take $h=0 \cdot 1$.
5. What do you mean by "Entry Control Loop" and "Exit Control Loop" ? What is a void pointer ?
6. Given the following table of values :

x	4	5	7	10
$f(x)$	48	100	294	900

Calculate $f(8)$ using Lagrange's formula.
7. a) Derive the condition of convergence of Gauss-Seidel iterative method for solution of linear simultaneous equations.
b) Write a C program to implement Trapezoidal method. Result is required to be corrected up to n decimal places. The limits of integration and the value of n (precision) are to be taken as input.
8. a) Solve the following system of equation by $L U$-factorization method.
$x+3 y+8 z=4$
$x+4 y+3 z=-2$
$x+3 y+4 z=1$
b) Given the following differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y+x y, \quad y(0)=1$

Calculate y at $x=0 \cdot 1$ taking $h=0 \cdot 02$.
9. a) Define Δ, ∇ and E. Hence derive Newton's forward difference formula.
b) Derive the order of convergence for Newton-Raphson method
c) Evaluate $\sqrt{5}$ corrected up to 4 decimal places using Newton-Raphson method.

$$
5+5+5
$$

10. a) Write a C program to create the divided difference table.
b) Prove that $\Delta, \nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$
11. a) Derive the truncation error associated with Trapezoidal method.
b) Find $y(0 \cdot 26)$ from the following tabular values using Newton's Backward difference formula :

x	$0 \cdot 10$	$0 \cdot 15$	$0 \cdot 20$	$0 \cdot 25$	$0 \cdot 30$
y	$0 \cdot 1003$	$0 \cdot 1511$	$0 \cdot 2027$	$0 \cdot 2553$	$0 \cdot 3093$

c) Compute the absolute error and relative error associated with division of two approximate numbers A and B. $5+5+5$

