Name :	
Roll No. :	A Annual (Y Examining and Examine
Invigilator's Signature :	

CS/B.Tech (ECE-N)/SUPPLE/SEM-8/EC-803D/2010 2010 DIGITAL IMAGE PROCESSING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - Consider an image of size M×N with 256 gray levels. The total number of bits required to store this digitized image is
 - a) $M \times N \times 256$ b) $M \times N \times 255$
 - c) $M \times N \times 8$ d) none of these.
 - ii) The image function f(x,y) is characterized by two components : f(x, y) = i(x, y).r(x, y) where
 - a) $0 < i(x, y) < 1 \& 0 < r(x, y) < \infty$
 - b) 0 < i(x, y) < 1 & 0 < r(x, y) < 1
 - c) $0 < i(x, y) < \infty \& 0 < r(x, y) < \infty$
 - d) $0 < i(x, y) < \propto \& 0 < r(x, y) < 1.$

SE-83

[Turn over

CS/B.Tech (ECE-N)/SUPPLE/SEM-8/EC-803D/2010 Utech iii) The effect, caused by the use of an insufficient number of gray levels in smooth areas of a digital image is called

- a) false contouring b) gray level slicing
- c) bit plane d) none of these.
- iv) A spatial averaging filter in which all co-efficient are equal is called a
 - a) weighted average filter b) box filter
 - c) median filter d) none of these.
- v) The D8 distance (chessboard distance) between p and qwith co-ordinates (x, y), (s, t) is defined as
 - a) D8 (p, q) = |x s| + |y t|
 - b) D8 $(p, q) = \max(|x s|, |y t|)$
 - c) D8 $(p, q) = \left[(x-s)^2 + (y-t)^2 \right]^{\frac{1}{2}}$
 - d) none of these.

SE-83

- CS/B.Tech (ECE-N)/SUPPLE/SEM-8/EC $\frac{303D}{2}010$ vi) A transformation function with the property T (r) = 0 for r in the range [x, y] and T (r) = 255 for r in the range [p, q] produces an image of the 7th bit plane is an 8-bit image where x, y, p, q are
 - a) x = 128, y = 255, p = 0, q = 128
 - b) x = 0, y = 127, p = 128, q = 255
 - c) x = 0, y = 63, p = 64, q = 127
 - d) none of these.
- vii) is a common technique for enhancing the appearance of images.
 - a) Splitting and Merging
 - b) Region growing
 - c) Watershed segmentation
 - d) Histogram equalization.
- viii) Image Degradation causes
 - a) linearity of the optical sensor
 - b) relative motion between an object and camera
 - c) proper focus
 - d) all of these.

SE-83

[Turn over

CS/B.Tech (ECE-N)/SUPPLE/SEM-8/EC-803D/2010 ix) The convolution of two functions f(x, y) and g(x, y)

denoted by $f(x, y)^*g(x, y)$, is defined as

a)
$$f(x, y) * g(x, y) = \int_{0}^{\infty} \int f(\alpha, \beta) g(x - \alpha, y - \beta) d\alpha d\beta$$

b)
$$f(x, y) * g(x, y) = \int_{-\infty}^{\infty} \int f(\alpha, \beta) g(x - \alpha, y - \beta) d\alpha d\beta$$

c)
$$f(x, y) * g(x, y) = \int_{-\infty}^{\infty} \int g(\alpha, \beta) f(x-\alpha, y-\beta) d\alpha d\beta$$

- d) none of these.
- x) The inverse Fourier transform of F(u,v) is $F^{-1}{F(u, v)} = f(x, y)$ where f(x, y) is defined as a) $\int_{-\infty}^{\infty} \int F(u, v) \exp [J 2\pi (ux + vy)] du dv$ b) $\int_{-\infty}^{\infty} \int F(u, v) \exp [J \pi (ux + vy)] du dv$ c) $\int_{-\infty}^{\infty} \int F(u, v) \exp [J 4\pi (ux + vy)] du dv$
 - d) none of these.

SE-83

- 2. a) What is Weber ratio?
 - b) Define 4-adjacency, 8-adjacency and m- adjacency. 2 + 3
- 3. a) What is the basic equation for getting a negative image ?
 - b) Consider an 8-pixel line of intensity data { 255, 118, 127, 182, 18, 178, 82, 55 }. If it is uniformly quantized with 4 bit accuracy, compute the *rms* error and *rms* signal-to-noise ratios for the quantized data. 1 + 4
- 4. What is Wiener filtering ? Briefly describe the Wiener filtering. 1 + 4
- 5. a) Write an expression for 2-D discrete convolution.
 - b) What is sobel operator ?
 - c) Where do we apply Sobel operator ? 2+2+1
- 6. a) What is watermarking ?
 - b) How do we protect the watermarked images ? 2+3
- SE-83 5 [Turn over

CS/B.Tech (ECE-N)/SUPPLE/SEM-8/EC-803D/2010

2010 000 Utech

(Long Answer Type Questions)

Answer any *three* of the questions. $3 \times 15 = 45$

GROUP – C

7. a) Consider the simple 4×8 , 8-bit image :

21	21	95	95	169	169	243	243
21	21	95	95	169	169	243	243
21	21	95	95	169	169	243	243
21	21	95	95	169	169	243	243

i) Compute the entropy of the image

ii) Compress the image using Huffman coding.

- b) Describe coding redundancy, interpixel redundancy and psychovisual redundancy. 3 + 6 + 6
- 8. a) What do you mean by image enhancement ? Explain.
 - b) What are Mean and Median filters ? Compare the performance.
 - c) Describe high pass filters and low pass filter. Explain when they are used. 4 + 6 + 5
- 9. a) Describe the region growing technique for image segmentation and mention the problem associated with it.
 - b) Discuss the hough transform method for edge-linking.
 - c) State the problems associated with hough transform when slope-intercept form to equation of straight line is considered. Why is the problem reduced when normal form is considered ? 6+6+3

SE-83

CS/B.Tech (ECE-N)/SUPPLE/SEM-8/EC-80 2010 10. Write short notes on any *three* of the following 5 e infa Content-based image retrieval a)

Polygonal approximation

b)

- Properties of two-dimensional Fourier transform. c)
- Histogram equalization d)
- Discrete cosine transform. e)

[Turn over