CS/B.TECH/ECE/EVEN/SEM-6/EC-604B/2016-17

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: EC-604B

INFORMATION THEORY AND CODING

Time Allotted: 3 Hours

Full Marks: 70

Turn over

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - Relation between channel capacity and bandwidth of charmel is related as
 - $C = B(\ln 2(S/N))$
 - $C = B(\ln 2(1 + S/N))$
 - C = B/N
 - d) C = B * N.
 - A code is with minimum distance 5. How many errors can it correct?
 - 3 a)

b) 2

c)

VI-600409

d) 1. http://www.makaut.com

CS/B.TECH/ECE/EVEN/SEM-6/EC-604B/2016-17

iii) In the expression of Krast Inequality, the value of Kis given by

a)
$$K = \sum_{j=1}^{m} 2^{-nj} \ge 1$$

b)
$$K = \sum_{j=1}^{m} 2^{-nj} \le 1$$

c)
$$K = \sum_{j=1}^{m} 2^{-nj} = 1$$

- d) none of these.
- iv) The coding efficiency η is given by

a)
$$\eta = H(X) \cdot I$$

a)
$$\eta = H(X) \cdot L$$
 b), $\eta = H(X) / L$

c)
$$\eta = L/H(X)$$

- c) $\eta = L/H(X)$ d) none of these.
- For GF (22) the elements in the set are

For a Reed-Solomon code, the minimum distance is

a)
$$n+k-1$$

b)
$$n-k+1$$

c)
$$k-n-1$$

d)
$$k - n + 1$$
.

vii) The code rate for (15, 5) code is

VI-600409

2

http://www.makaut.com

CS/B.TECH/ECE/EVEN/SEM-6/EC-604B/2016-17

viii) For a (7, 4) cyclic code generated by

 $g(x) = x^3 + x + 1$. The syndrome for error pattern $e(x) = x^3$ is

a) 101

b) 111

c) 110

- d) 011.
- ix) Which among the below stated logical circuits are present in encoder and decoder used for the implementation of cyclic codes?
 - A) Shift register
 - B) Modulo-2 adders*
 - C) Counters
 - D) Multiplexers.
 - a) A and B

b) C and D

c) A and C

- d) B and D.
- x) The generator polynomial of a cyclic code is factor of
 - a) $X^n + 1$

- b) $X^{(n+1)} + 1$
- c) $X^{(n+2)} + 1$
- d) $X^{(n-1)}$ 1.
- xi) The capacity of a communication channel with a bandwidth of 4 kHz and 15 SNR is approx
 - a) 20 kbps

b) 16 kbps

- c) 10 kbps
- d) 8 kbps.

Turn over

CS/B.TECH/ECE/EVEN/SEM-6/EC-604B/2016-17

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- What is Hamming distance? Give relation between minimum distance and error correcting capability.
 Define Hamming bound.
- 3. Show that the channel capacity for a continuous channel is given by $C = B \log_2(1 + \frac{S}{N})$ bit/sec.
- 4. What is Krast inequality? Prove that Krast inequality should be satisfied for variable length source coding.

2 + 3

- 5. A DMS X has five symbols x_1 , x_2 , x_3 , x_4 and x_5 with probability $P(x_1) = 0.4$, $P(x_2) = 0.17$, $P(x_3) = 0.18$, $P(x_4) = 0.1$ and $P(x_5) = 0.15$, respectively.
 - a) Construct the Shannon-Fano code for X.
 - b) Calculate the efficiency of the code. 2 + 3
- 6. What is irreducible polynomial? What do you mean by polynomial over GF(2). Prove that f(X) = 1 + X + X³ is a irreducible polynomial over GF(2).

VI-600409

http://www.makaut.com

4

http://www.makaut.com

4

http://www.makaut.com

CS/B.TECH/ECE/EVEN/SEM-6/EC-604B/2016-17

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) Verify the following expression:

$$C_s = \log_2 m$$

Where C_s is the channel capacity of a lossless channel and m is the number of symbols in the channel.

- b) Given that AWGN channel with 4 kHz bandwidth and the noise power spectral density η/2 = 10¹² W/Hz. The signal power required at the receiver is 0·1 mW. Calculate the capacity of the channel.
- c) Define (i) Lossless and (ii) Deterministic channel.
- d) State and prove the Shannon-Hartley law of channel capacity. 3+3+(2+2)+5
- 8. a) For a systematic (7, 4) cyclic code determine the generator matrix and parity check matrix if $q(x) = x^3 + x + 1$.
 - b) A codeword polynomial c(x), belonging to the (7, 4) code with $g(x) = x^3 + x + 1$, incurs error so giving the received polynomial v(x). Find c(x) when
 - i) $v(x) = x^5 + x^2 + 1$
 - ii) $v(x) = x^6 + x^3 + 1$.

CS/B.TECH/ECE/EVEN/SEM-6/EC-604B/2016-17

c) Construct the encoder circuit for the (7, 3) code with $g(x) = x^4 + x^3 + x^2 + 1$ and input $i(x) = x^2 + x$. 5 + 6 + 4

9. a) One parity check code has parity check matrix as

$$H = 110:100$$

101:010

100:001

- Determine generator matrix
- ii) Find the code word that begins with [100]
- iii) If received word is { 110011 }, then decode this word.
- b) Explain the RSA algorithm with examples.

$$(3+3+3)+6$$

- 10. a) Given that (7, 3) Cyclic code with $g(x) = x^4 + x^3 + x^2 + 1$. Construct its dual code.
 - b) Find the generator polynomial g (x) for a single error correcting binary BCH code of blocklength 31.
 - Use the primitive polynomial $p(x) = x^5 + x^2 + 1$ to construct GF (32). 5+5+5

VI-600409

http://www.makaut.com

6

VI-600409 5 [Turn over

CS/B.TECH/ECE/EVEN/SEM-6/EC-604B/2016-17

- 11. Write short notes on any three of the following: 3×5
 - a) Source Coding
 - b) Hamming Code
 - c) Trellis diagram
 - d) Error control strategy
 - e) Viterbi decoding.

MAKAUT, com

http://www.makaut.com