### 2014

# Information Theory and Coding

Time Alloted: 3 Hours

Full Marks: 70

The figure in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

# GROUP - A ( Multiple Choice Type Questions )

1. Choose the correct alternatives for any ten of the following:

10x1=10

http://www.makaut.com

- i) The condition of a dual code in case of linear block code is
  - a) GH1=0
  - b) (HG)\*=0
  - c) H'G'=0
  - d) GH\*=1
- ii) The binary Hamming Codes have the property that
  - a) (n, k)=(2m+1, 2m-1-m)
  - b)  $(n, k)=(2^m-1, 2^m-1+m)$
  - c) (n, k)=(2m-1, 2m-1-m)
  - d) (n, k)=(2m-1, 2m-t-m)

1299 1

# [ Turn over ]

### CS/B.Tech/Even/ECE/6th Sem/EC-604B/2014

- iii) If m=4 then what will be the length of the BCH Code?
  - a) 16
  - b) 17
  - c) 15
  - d) none of these.
- iv) A (7,4) Linear Block Code with minimum distance guarantees error detection of
  - a)  $\leq 4$  bits
  - b) ≤ 2 bits
  - c) < 3 bits
  - d) None of these
- v) For GF(23) the elements in the set are
  - a) {1,2,3,4,5,6,7}
  - b) {0,1,2,3,4,5,6}
  - c) {0,1,2,3}
  - d) {0,1,2,3,4,5,6,7}
- vi) A code with minimum distance d<sub>min</sub> ≈5. How many errors it can correct'
  - a) 3
  - b) 4
  - c) 2
  - d) 1
- vii) The Hamming distance between v = 1100001011 and w = 1001101001 is
  - a) 1
  - b) 5
  - c) 3

1299

2

d) 4

- viii) Cyclic redundancy check is a type of
  - a) Convolution code
  - b) cyclic code
  - c) Parity check code
  - d) none of these.
- Consider the parity check matrix H=

received vector = (001110). Then the syndrome is given by

- a) (110)
- b) (100)
- c) (111)
- d) (101)
- A (8,4) linear code has a code rate of
  - a) 8
  - b) 4
  - c) 0.5
  - d) 2
- For a (7, 4) cyclic code generated by g(x) = 1 + x + x3 syndrome for the error pattern e(x)=x3 is
  - a) 101
  - b) 011

## CS/B.Tech/Even/ECE/6th Sem/EC-604B/2014

- c) 111
- d) 110.
- xii) Entropy means
  - a) amount of information
  - b) rate of information
  - c) measure of uncertainty
  - d) probability of message
- xiii) The entropy of information source is maximum when symbol occurrences are
  - a) equi-probable
  - b) different probability
  - c) both (a) & (b)
  - d) none of these
- xiv) Measure of information of a message mi< with probability pu is given by
  - a) log 6 (1/p4)
  - b) log <sub>b</sub> (p<sub>k</sub>)
  - c) log 6 (l-pk)
  - d) log b (1/1-pk)
- xv) A source delivers symbols m, m, m, and m, with probabilities 1/2, 1/4, 1/8 and 1/8 respectively. The entropy of the system is
  - a) 1.75 bits/sec
  - b) 1.75 bits/symbol
  - c) 1.75 symbols
  - d) 1.75 symbol/bit

199 3 http://www.makaut.com

[ Turn over ]

1299

http://www.makaut.com

# **GROUP - B** (Short Answer Type Questions)

Answer any three of the following.

3x5=15

2. A (8, 4) cyclic code is generated by  $g(X) = 1+X+X^4$ . Find the generator and parity-check matrix in systematic form.

3+2

http://www.makaut.com

- 3. a) What is systematic structure of a code word?
  - b) What is syndrome and what is syndrome and what is its significance? Draw the syndrome circuit for a (7, 4) linear block

code with parity-check matrix 
$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$1+(2+2)$$

- 4. Determine the generator polynomial of a double error correcting BCH code of block length, n=15 5
- A discrete memory less source has five symbols

 $x_1, x_2, x_3, x_4$  and  $x_4$  with probabilities of occurrence

$$P(x_1) = 0.4, P$$

 $(x_1) = 0.19, P(x_2) = 0.16, P(x_3) = 0.15 \text{ and } P(x_3) = 0.1$  Construct the Huffman code.

State and explain source encoding theorem.

[Turn over]

### CS/B.Tech/Even/ECE/6th Sem/EC-604B/2014

# **GROUP - C** (Long Answer Type Questions)

Answer any three of the following. 3x15=45

- Draw the block diagram of a typical data transmission system and explain the function of each block.
- For a BSC shown below find the channel capacity for P=0.9 Derive the formula that you have used.



- 9. The parity cheek bits of a (8, 4) block code are generated by  $c_1 = d_1 \oplus d_2 \oplus d_4$ ,  $c_6 = d_1 \oplus d_2 \oplus d_3$ ,  $c_7 = d_1 \oplus d_3 \oplus d_4$ ,  $c_6 = d_2 \oplus d_3 \oplus d_4$ 
  - a) Find the generator matrix and the parity check matrix of this code.
  - b) Find the minimum weight of this code
  - c) Find the error detecting and the error correcting capability of this code
  - d) Show through an example that this code can detect three errors/code word.

1

- 5

1299

### CS/B.Tech/Even/ECE/6th Sem/EC-604B/2014

10. What is syndrome array? Explain how the standard array can be used to make a correct decoding?

2+3

3

b) Consider the (7,4) linear block code whose decoding table is given below:

|          | <del>, </del> |
|----------|---------------|
| Syndrome | Coset leader  |
| 100      | 1000000       |
| 010      | 0100000       |
| 001      | 0010000       |
| 110      | 0001000       |
| 011      | 0000100       |
| 111      | 0000010       |
| 101      | 0000001       |
|          |               |

Show with an example that this code can correct any single error but makes a decoding error when two or more errors occur.

c) Show that if the minimum distance of a t-error correcting code

is 
$$d_{\min}$$
, then  $t \le (d_{\min} - 1)/2$ 

11. A (15,5) linear cyclic code has a generator polynomial has  $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$ 

a) Draw the block diagram of the encoder for this code

b) Find the code polynomial  $d(x) = 1 + x^2 + x^4$  for the message polynomial (in a systematic form)

# c) is $v(x) = 1 + x^4 + x^6 + x^8 + x^{14}$ a code polynomial? If not, fi the syndrome of v(x)

d) A (7,4) linear cyclic code has a generator polynomia  $g(x) = 1 + x^2 + x^3$ . Draw the syndrome circuit and find out the syndrome showing all the contents of the resister in all to required shifts for r≈0010110

- 12. Write short notes on (any three):
  - a. Error control strategies
  - b. Shannon-Fano algorithm
  - c. Hamming coding
  - d. Huffman code
  - e. Golay codes

1299

# 7

http://www.makaut.com