CS/B.TECH (ECE)/SEM-5/EC-513 (N)/07/(08)

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 CONTROL SYSTEM

SEMESTER - 5

		.,	
Time: 3 Hours !			

[Full Marks: 70

Semi-log and graph sheets are printed at the end of this booklet.

GROUP - A

(Multiple Choice Type Questions)

Cho	oose t	he correct alternatives for any te	n of t	the following: $10 \times 1 = 10$
Û		e characteristic equation of a settem is	econd	order system is $s^2 + 6s + 25 = 0$. The
	a)	underdamped	b)	overdamped
	c)	undamped	d)	critically damped.
n)	The	e type number of a transfer func	tion d	enotes the number of
	a)	poles at origin	b)	zeros at origin
-	c)	poles at infinity	d)	none of these.
III)	Pre	sence of non-linearities in a cont	rol sy	stem leads to introduce
-	a)	transient error	b)	instability
	c)	steay state error	d)	all of these.
iv)	In t	erms of Bode plot, the system is	stabl	e if
	a)	PM = GM	b)	PM & GM both are positive
	c)	PM and GM both are negative	d)	PM negative but GM positive.
v)	By	the use of PD control to the seco	nd or	der system, the rise time
	a)	decreases	b)	increases
	c)	remains same	d)	none of these.

CS/B.TECH (ECE)/SEM-5/EC-513 (N)/07/(06)

4

vi)	The	lead-lag compensation will impre	ove	and the first of the second of				
	a)	transient response						
	b)	transient response and steady state response						
	c) .	none of these.						
vii)	The	response of a control system, ha	aving c	lamping factor as unity will be				
	a)	oscillatory	b)	underdamped				
	c)	critically damped	d)	none of these.				
viii)	A sy	stem has a single pole at origin.	Its im	pulse response will be				
	a) .	constant	b)	ramp				
	c)	decaying exponentially	d)	oscillatory.				
ix)	The	matrix shown below is $ \begin{bmatrix} 4 & -4 & 2 \\ -4 & 5 & -2 \\ 2 & -2 & 1 \end{bmatrix} $						
	a)	positive definite	b)	positive semi-definite				
	c)	negative definite	d)	none of these.				
x)		an $n \times n$ matrix. Then the symplectic rollability matrix should be	ystem	to be controllable, the rank	c of the			
	a)	n	b)	> n	•			
	c)	≥ n	d)	≤ n.				
xi)		settling tine for a second order shoot is	syste	m resonding to a step input	with 5%			
	a)	4/ξ W _n	b)	2/ξ W _n				
٠.	c)	3/ξ W _n	d)	5/ξ W _n .				
xii)	Area	under a unit impulse function is	3					
	a)	infinity	b)	zero				
	c)	unity	d)	none of these.	-			

E004

5

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

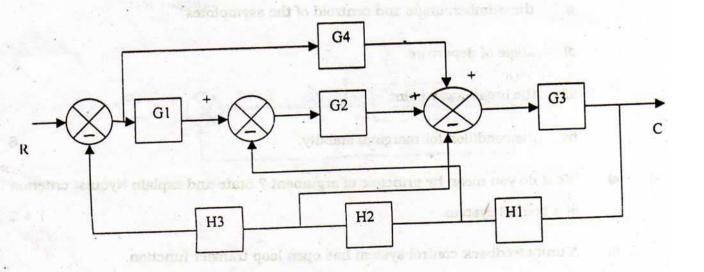
2. Obtain state variable model of the system whose transfer function is given by

$$\frac{Y(s)}{U(s)} = \frac{s+1}{s^3+3s^2+7s+1}.$$

- Determine the transfer function of an armature control d.c. motor system.
- A feedback control system is decribed as

$$G(s) = \frac{50}{s(s+2)(s+5)}$$
, $H(s) = \frac{1}{s}$

Evaluate the static error constants K_p , $K_v & K_a$ for the system.


5. Consider the system

$$\dot{x}_1 = -x_2 + \alpha x_1^3$$

$$\dot{x}_2 = x_1 + \alpha x_2^3.$$

Discuss the stability in the sense of Lyapunov.

6. Find C/R using block diagram reduction method of the following diagram:

CS/B.TECH (ECE)/SEM-5/EC-513 (N)/07/(08)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3\times15=45$

- 7. a) Mention the difficulties that may arise in applying Routh stability criterion. What do you mean by relative stability?
 - b) The open loop transfer function of a unity feedback control system is given by

$$G(s) = \frac{K(s+1)}{2s^3 + as^2 + 2s + 1}$$

The above system oscillates with frequency ω , if it has poles on $s = +j\omega$ and $s = -j\omega$ and no poles in the right half s-plane. Determine the values of K and α , so that the system oscillates at a frequency of 2 radian/sec.

c) The open loop transfer function of a unity feedback control system is given by

$$G(s) = \frac{K}{s(s^2 + 6s + 25)}$$

Find:

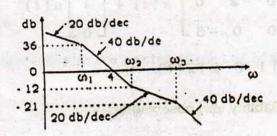
- i) the number, angle and centroid of the asymptotes
- ii) angle of departure
- iii) the break-away point
- tv) the condition for marginal stabilty.

. 6

- 8. a) What do you mean by principle of argument? State and explain Nyquist criterion of a control system. 1+2
 - b) A unity feedback control system has open loop transfer function,

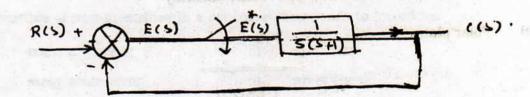
$$G(s)H(s) = \frac{(4s+1)}{s^2(s+1)(2s+1)}$$

Determine closed loop stability by Nyquist plot.


7

5004

S/B.TECH (ECE)/SEM-5/EC-513 (N)/07/(08)


c) Determine the transfer function of the system whose Bode plot is shown below:

a) Explain sampling and hold.

3

b) Find the pulse transfer function for the error sampled system shown in the following figure.

c) Find the inverse and transform of the following system:

5

$$F(z) = \frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}.$$

CS/B.TECH (ECE)/SEM-5/EC-513 (N)/07/(08)

State the difference between describing function and transfer function.

b) A single input single output system is given by

$$\dot{x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u(t)$$

and $y(t) = [1 \ 0 \ 2]x(t)$.

Test for controllability and observability.

5

Obtain the eigenvalues and eigenvectors for a system described by c)

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X.$$
 5

11. Write short notes on any three of the following: 3×5

- a) PID controller
- b) Compensation techniques
- c) Phase plane technique of non-linear system analysis
- d) Dead zone and saturation type of non-linearity
- e) Polar plot.

END