www.makaut.com

Invigilat	or's S	Signature :		•••••	
		CS/B.Tech(EC	CE)/SEN 09	4-5/EC-50)2/2009-10
		DIGITAL COM		CATION	
Time All	otted	: 3 Hours		· .	ll Marks : 70
rune mu	oneu	. O Hours			·
	Ti	ne figures in the marg	gin indico	ate full mark	cs.
Candid	lates	are required to give t as far a	heir ansı s practice		r own words
		GROU	IP – A		
		(Multiple Choice	Type Q	uestions)	
1. Che	oose	the correct alternati	ves for a	ny ten of th	ne following :
					$10 \times 1 = 10$
i)	The	e spectral density of	white no	oise is	
	a)	Exponential	b)	Uniform	
	c)	Poisson	d)	Gaussian	•
ii)	Sar	npling theorem finds	applicat	tion in	
	a)	Amplitude modular	ion		
	b)	Frequency modula	tion		
	c)	PCM			
	d)	none of these.			
55404					[Turn over

CS/B.Tech(TOCKEN /	0734 =	/MA = AA	10000 10
LS/Blechi	M.C. H.17:	SHIM-5	ノロンニートロンノ	/'// WILL I /
				<i> </i>

iii)	Measure of information	$I(m_k)$	of a	message	m_k	with
	probability p_{k} is given by	r				

- a) $\log_b(1/p_k)$
- b) $\log_b(p_k)$
- c) $\log_b \left(1 p_k\right)$
- d) $\log_b [1/(1-p_k)].$

iv) What is effective to reduce cumulative error?

- a) PCM
- b) DPCM
- c) Delta sigma modulation
- d) ADM.

v) To avoid aliasing, what is the Nyquist rate of the signal $x(t) = 8 \cos 200 \pi t$?

a) 50 Hz

b) 100 Hz

c) 200 Hz

d) 400 Hz.

vi) AMI is another name of which process?

a) Polar

b) Bipolar

c) On-off

d) None of these.

55404

554	04		•	3	[Turn over		
	•	c)	Coherent PSK	d)	DPSK.		
		a)	Coherent QPSK	b)	Coherent FSK		
•	•	has	smaller error pro	bability?			
	xi)	For	a given E_b/N_0	which digi	ital modulation scheme		
		c)	0.72	d)	none of these.		
		a)	0.923	b)	0.989		
	λ,		fman coding is	the chicie	nicy for second arder		
	x)				ency for second arder		
		а) с)	0.72	d)	none of these.		
		a)	0.85	b)	0.75		
	24				Then its entropy is		
	ix)				emory source channels		
		c)	Both (a) & (b)	d)	none of these.		
		a)	AM	b)	FM		
	viii)	Whi	ch is more immu	ne to noise	?		
		c)	5	d)	none of these.		
		a)	8	b)	10		
			sample required				
	vii)	If n	o. of quatization	levels is 2	56, then no. of bits for		

xii)	PN	sequence	is	used	to	generate
------	----	----------	----	------	----	----------

a) DSSS

b) GMSK

c) DPSK

d) none of these.

xiii) Equalizer is used to

- a) increase the signal to noise ratio at the receiver
- b) equalize the distortion introduced by channel
- c) decrease the error probability of signal detection
- d) none of these.
- xiv) For a voice grade signal, the signal to noise ratio of DPCM is
 - a) worse than standard PCM
 - b) better than standard PCM
 - c) same as standard PCM
 - d) none of these.
- xv) The bit rate of a digital communication system is 34 Mbps. The modulation scheme is QPSK. The band rate of the system is
 - a) 68 Mbps
- b) 34 Mbps
- c) 17 Mbps
- d) 85 Mbps.

55404

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Explain with a suitable block diagram how an analog signal is converted into a digital signal using PCM.
- Explain the principle of operation of QPSK modulator with suitable block diagram.
- 4. What are the desirable properties of line codes?
- 5. What is a PN sequence? What are the properties of a PN sequence?2 + 3
- 6. Explain the operation of early-late gate bit synchronizer.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Deduce the transfer function of a matched filter. 5
 - b) Show that the SNR at the output of an optimum filter optimized for error performance is $8E_s/\eta$ where E_s = signal energy & $\eta/2 = G_n(f)$ is the PSD of AWGN.

55404

5

[Turn over

c) Consider a rectangular pulse s (t) of amplitude A & duration T sec, given by

$$s(t) = A, 0 < t < T$$

= 0, otherwise

and given that AT = 1

- i) Find the spectrum of the output signal of the matched filter.
- ii) Determine the output SNR of the matched filtre. 5
- 8. a) Draw & explain the working of QPSK modulator and demodulator.
 - b) What are the advantages and disadvantages of DPSK modulation?
 - c) Compare the performance of QPSK and DPSK modulation schemes.
- 9. a) What is intersymbol interference (ISI)?
 - b) What is Nyquist criterion for zero ISI?
 - c) What are the limitations of Nyquist pulse? How is it solved using Raised Cosine Pulse.
 - d) A communication channel of bandwidth 75 kHz is required to transmit binary data at a rate of 0·1 Mbps using raised cosine pulses. Determine the roll-off factor.

55404

- 10. a) State and explain Shanon-Hartley channel capacity theorem. 5
 - b) What is meant by Shanon limit?
 - c) Eight message symbols

[X] = [x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8] have probabilities [P] = [1/4, 1/8, 1/16, 1/16, 1/16, $\frac{1}{4}$, 1/8, 1/16] respectively.

Apply Shanon-Fano coding procedure to find out efficiency of the coding scheme. Take M = 2.