	Utech
Name:	(4)
Roll No.:	The Owner of Exemplify and Excitors
Invigilator's Signature :	

ENGINEERING MATERIALS SCIENCE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

 $10 \times 1 = 10$

- The atomic packing fraction of diamond cubic structure
 is
 - a) 0.34

b) 0.35

c) 0.52

- d) 0.74.
- ii) The radius ratio of Nacl crystal falls into which of the following ranges?
 - a) 0.155 0.225
- b) 0.225 0.414
- c) 0.414 0.732
- d) 0.732 1.00.

6230 [Turn over

iii) In which mode of fracture, fracture surfaces appear grey?

a) Shear

- b) Cleavage
- c) Transgranular
- d) Intergranular.
- iv) Which of the following statements is *not* true?
 - a) Stainless steels crack in ammonia environment
 - b) Intergranular corrosion occurs in Tyne 304 stainless steels
 - c) Rivetted joints enhance crevice corrosion
 - d) Plain C steels can be stress relieved at $600^{\circ} 650^{\circ}$ C.
- v) Fermi level for extrinsic semiconductor depends on
 - a) donor element
 - b) impurity concentration
 - c) temperature
 - d) all of these.

- vi) Unit of surface energy is
 - a) dynes/cm
- b) dynes/cm
- c) ergs/cm
- d) $ergs/cm^2$.
- vii) Fracture stress (σ_f) is inversely proportional to
 - a) crack length
- b) $\frac{1}{\text{crack length}}$
- c) (crack length) 1/2
- d) (crack length) -1/2.
- viii) Which of the following is/are slip system(s) of a bcc lattice?
 - a) { 111 } < 110 >
- b) { 110 } < 111 >
- c) { 112 } < 110 >
- d) $\{123\} < 110 >$.
- ix) Least tendency of formation of deformation twinning is observed in case of
 - a) intermetallic compounds
 - b) fcc metals
 - c) *bcc* metals
 - d) hcp metals.

- x) Ti and its alloys are commonly used in
- Unedh A
- a) oxidising conditions
- b) strongly oxidising conditions
- c) reducing conditions
- d) airfree acids and aqueous solutions environment.

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Write appropriate defect reaction for incorporation of CaO in ZrO $_2$ crystal using the Kröger-Vink notation and show how the rules of substitution have been complied with.
- 3. a) A diffracted X-ray beam is observed from the ($2\ 2\ 0$) plane of iron at a 2θ angle of $99\cdot1^\circ$ where X-rays of $0\cdot15418$ nm wavelength are used. Calculate the lattice parameter of iron crystal.
 - b) Calculate the density of NaCl that has rock salt crystal structure. Given : The ionic radii of Na $^+$ is 0.102 nm and Cl $^-$ is 0.181 nm. Atomic masses of Na = 22.99 gm/mol and Cl = 35.45 gm/mol. $2\frac{1}{2} + 2\frac{1}{2}$

6230 4

- 4. Briefly discuss with sketch how movement of dislocation through a crystal produces a step at the free surface of it.
- 5. Defining Pilling-Bedworth ratio, state the important factors of consideration if a metal is to form a protective oxide.
- 6. Briefly discuss intrinsic and extrinsic semiconductor with supporting energy band diagrams.
- 7. Enumerate the differences between Slip and Twinning mechanisms of deformation.

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) State Bragg's law of X-ray diffraction. Give the mathematical derivation of the law using relevant schematic diagram. 2+5
 - b) In a crystal, whose primitives are 1·2 Å, 1·8 Å and 2·0 Å, a plane (2 3 1) cuts an intercept of 1·2 Å along the X-axis. Find the length of intercept along Y-axis and Z-axis.
 - c) Show that, in a simple cubic lattice, the separation between successive lattice planes (1 0 0), (1 1 0) and (1 1 1) are in the ratio of 1:0.71:0.58.

6230 5 Turn over

- a) Give the mathematical derivation for the equilibrium concentration of point defect in an ionic crystal.
 Consider the point defect as 'Frenkel' defect.
 - b) Deduce Griffith's criterion of brittle fracture of solidswith suggested modifications of it.8
- 10. a) Draw the nominal stress-strain curve for mild steel and explain the principal features of it. What do you understand by 0.2% Yield stregh and how is it obtained from the stress-stain diagram of the above curve?

4 + 2

b) Define 'engineering' stress and 'true' stresss. Compare the engineering stress and strain with the true stress and strain for the tensile test of a low-C steel having the following test values: 2+4

Load applied to specimen = 17,000 lbf

Initial specimen diameter = 0.500 inch

Diameter of specimen

under 17,000 lbf load = 0.472 inch.

c) Amongst fcc, bcc and hcp metals, which is the most plastic and why?

6230

- 11. a) Deduce a mathematical relation that indicates the maximum stress to be applied for slip to occur in a perfect metallic lattice.
 - b) Derive a relation between a uniaxial stress acting on a cylinder of a pure metal single crystal and the resolved stress.
 - c) Prove that $\gamma=b\rho\bar{v}$, in respect of motion of dislocation through a crystal, where the notations have their usual meanings. 5+5+5
- 12. a) What are 'Crevice' and 'Pitting' corrosions? Describe with sketch an eletrochemical mechanism for the crevice corrosion of a stainless steel in an aerated NaCl solution. 2+3
 - b) Define corrosion 'polarization' and 'overvoltage'. Explain with sketches corrosion rate from polarization data :
 - i) where both oxidation and reduction reactions are rate limited by activation polarization.
 - ii) where reduction reaction is under combined activation-concentration polarization control.

2 + 4 + 4

- 13. a) Explain the mechanism of strain (work) hardening of metals. Point out the major disadvantage of work hardening as a method of increasing strength of a metal or alloy.
 - b) Draw a polarization curve for a metal that displays an active-passive transition. Illustrate how an active-passive metal can exhibit both active and passive corrosion behaviours. 3+4
 - c) Explain why conductivity of a semiconductor increases with temperature while that decreases for a metal as we move from absolute zero of temperature.

6230 8