

CS / B.TECH (CT) / SEM-3 / M (CT) 301/ 2010-11 2010-11

APPLIED MATHEMATICS
Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The point where the function $f(x)=|z|^{2}$ is not analytic is
a) Entire complex plane
b) Entire complex plane except at $z=0$
c) $z=0$
d) No such point exist.
$\mathrm{CS} / \mathrm{B} . \mathrm{TECH}(\mathrm{CT}) / \mathrm{SEM}-3 / \mathrm{M}(\mathrm{CT})$ 30(1) $2010-11$
ii) Evaluate $\oint_{C} \frac{\sin z}{z^{2}} \mathrm{~d} z$, where $C:|z|=4$:

a) 0
b) $2 \pi i$
c) 1
d) 2π.
iii) A function $f(z)$ can be expanded in a region $|z|>a$ [if $f(z)$ is analytic in the said region] by a
a) Taylor series
b) Laurent's series
c) neither Tailor series nor Laurent's series
d) either Taylor series or Laurent's series.
iv) Evaluate $p x-z=e^{q}-q y$:
a) $\quad z=a x+b y+e^{b}$
b) $z=a x+b y+e^{a}$
c) $z=a x+b y-e^{b}$
d) $\quad z=a x+b y-e^{a}$.
v) The solution of a p.d.e. given by $z=f(p, q, x, y)$ is a
a) straight line
b) curve
c) surface
d) volume.
vi) A two dimensional heat equation $\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$ becomes Laplace equation when
a) ' u ' does not depend on time
b) ' u ' does not depend on space
c) $c=0$
d) $\quad c=1$.
vii) $\sin 3 x$ is a periodic function of period
a) $\frac{\pi}{3}$
b) 2π
c) 6π
d) $\frac{2 \pi}{3}$.
viii) If the function $f(x)$ satisfies Derichlet's condition and $x=c$ is a point of discontinuity, then the Fourier series of $f(x)$ at the point $x=c$ converges to
a) $\quad f(c)$
b) $\frac{1}{2}[f(c-0)+f(c+0)]$
c) $\frac{1}{2}[f(-c+0)+f(c-0)]$
d) $\quad \frac{1}{2}[f(c+0)+f(-c-0)]$.
$\mathrm{CS} / \mathrm{B} . \mathrm{TECH}(\mathrm{CT}) / \mathrm{SEM}-3 / \mathrm{M}(\mathrm{CT})$ 30(1) $2010-11$
ix) $\quad f(x)=1 \quad 0 \leq x<3$

$$
=-1 \quad-3<x<0
$$

is an example of the
a) odd function
b) even function
c) neither odd nor even function
d) periodic function.
x) If A and B be two events then which one of the following is false ?
a) $\quad P(A+B)+P(A B) \leq 1$
b) $\quad P(A+B) \leq P(A)+P(B)$
c) $\quad P(A B) \geq P(A)+P(B)$
d) $\quad P(A+B)+P(A B) \geq 0$.
xi) If the Fourier Transform of $f(x), \mathcal{F}\{f(x)\}=F(s)$ then the Fourier Transform of $\mathcal{F}\{f(x) \cos a x\}$ is
a) $\quad F(s-a)$
b) $\quad F(s+a)$
c) $\quad \frac{1}{2}\{F(s-a)+F(s+a)\}$
d) $\quad F(s-a)+F(s+a)$.
xii) What is the probability of not getting a double six in a throw with two dice ?
a) $1 / 36$
b) $35 / 36$
c) $1 / 18$
d) $25 / 36$.

2. Verify whether the complex valued function $f(z)=\bar{z}$ is analytic at $z=0$.
3. Find the Taylor's series expansion of the function $f(z)=\ln z$ about $z=1$. Find also the region of convergence.
4. \quad Solve the p.d.e. $p^{2}+q^{2}=1$.
5. Find the Fourier series of the following function by extending it to a periodic function :

$$
\begin{aligned}
f(x) & =3 & & 0<x \leq 5 \\
& =-3 & & -5<x \leq 0
\end{aligned}
$$

Show that the Fourier series does not converge to $f(x)$ at $x=0$.
6. Show that the probability of occurrence of only one of the events ' A ' and ' B ' is
$P(A)+P(B)-2 P(A B)$

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $\quad 3 \times 15=45$
7. a) Show that the function $u=e^{-y} \cos x$ is harmonic and find the corresponding analytic function $f(z)$. What is the imaginary part of this analytic function?

CS / B.TECH (CT) / SEM-3 / M (CT) 30(1) 2010-11 Mrech
b) Expand the function $f(z)=\frac{z}{(z-1)(z-3)}$ about 2 in the region $0<|z-1|<2$. Which kind of series is it ? Find also the residue term.
$9+6$
8. a) Find the integral surface of the p.d.e. $(y-z) p+(z-x) q=x-y$, which passes through the curve $x y=4, z=0$.
b) The ends $x=0$ and $x=l$ of a finite wire are maintained at zero temperature. Given that the temperature $u(x, t)=f(x)$ at $t=0$. Determine the temperature at a subsequent time ' t '. [Assume c^{2} is the diffusivity of the material of the wire]. $7+8$
9. a) Find a Fourier series of the function $f(x)=x-x^{2}$, $-\pi<x \leq \pi$.

Hence find the value of the series
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$.
b) Find the sine series which represents the function $f(x)=\pi-x$ in $0<x<\pi . \quad 10+5$
10. a) Describe the Newton-Raphson method for solving an algebraic equation.
b) Using Euler's method with $h=0 \cdot 1$, find the solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}, y(0)=0$ at $x=0.6$.
[Correct up to 3 decimal places]
$7+8$
$\mathrm{CS} / \mathrm{B} . \mathrm{TECH}(\mathrm{CT}) / \mathrm{SEM}-3 / \mathrm{M}(\mathrm{CT})$ 30(1) $2010-11$
11. a) The p.d.f. of a random variable X is $f(x)=(x A 1)(2-x)$ for $1 \leq x \leq 2$. Determine the value of k, the distribution function $F(x)$ and $P\left(\frac{5}{4} \leq X \leq \frac{3}{2}\right)$.
b) If X has a binomial distribution with parameter ' n ' and ' p ', then show that
i) its mean is $n p$ and
ii) variance is $n p q$.
$7+8$

