	Utech
Name :	
Roll No. :	A Associate VE Associate 2nd Explored
Invigilator's Signature :	

CS / B.TECH (CT) / SEM-3 / M (CT) 301/ 2010-11 2010-11

APPLIED MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The point where the function $f(x) = |z|^2$ is not analytic is
 - a) Entire complex plane
 - b) Entire complex plane except at z = 0
 - c) z = 0
 - d) No such point exist.

3160 [Turn over]

- Evaluate $\oint_C \frac{\sin z}{z^2} dz$, where C: |z| = 4: ii)
 - a) 0

b) $2\pi i$

c) 1

- 2π . d)
- A function f(z) can be expanded in a region |z| > aiii) [if f(z) is analytic in the said region] by a
 - Taylor series a)
 - Laurent's series b)
 - neither Tailor series nor Laurent's series c)
 - d) either Taylor series or Laurent's series.
- Evaluate $px z = e^q qy$: iv)
 - a) $z = ax + by + e^b$ b) $z = ax + by + e^a$
 - c) $z = ax + by e^b$ d) $z = ax + by e^a$.
- The solution of a p.d.e. given by z = f(p,q,x,y) is a v)
 - a) straight line
- curve

- surface c)
- volume. d)

- vi) A two dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$ becomes Laplace equation when
 - a) 'u' does not depend on time
 - b) 'u' does not depend on space
 - c) c = 0
 - d) c = 1.
- vii) $\sin 3x$ is a periodic function of period
 - a) $\frac{\pi}{3}$

b) 2π

c) 6π

- d) $\frac{2\pi}{3}$.
- viii) If the function f(x) satisfies Derichlet's condition and x = c is a point of discontinuity, then the Fourier series of f(x) at the point x = c converges to
 - a) f(c)

- b) $\frac{1}{2}[f(c-0)+f(c+0)]$
- c) $\frac{1}{2}[f(-c+0)+f(c-0)]$ d) $\frac{1}{2}[f(c+0)+f(-c-0)]$.

ix)
$$f(x) = 1$$
 $0 \le x < 3$

$$= -1 -3 < x < 0$$

is an example of the

- odd function a)
- even function b)
- neither odd nor even function c)
- d) periodic function.
- If A and B be two events then which one of the following x) is false?

a)
$$P(A + B) + P(AB) \le 1$$

$$P(A + B) + P(AB) \le 1$$
 b) $P(A + B) \le P(A) + P(B)$

c)
$$P(AB) \ge P(A) + P(B)$$

$$P(AB) \ge P(A) + P(B)$$
 d) $P(A + B) + P(AB) \ge 0$.

xi) If the Fourier Transform of f(x), $\mathcal{F}\{f(x)\}=F(s)$ then the Fourier Transform of $\mathcal{F} \{f(x)\cos ax\}$ is

a)
$$F(s-a)$$

b)
$$F(s+a)$$

c)
$$\frac{1}{2} \{ F(s-a) + F(s+a) \}$$
 d) $F(s-a) + F(s+a)$.

$$F(s-a)+F(s+a)$$

xii) What is the probability of not getting a double six in a throw with two dice?

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Verify whether the complex valued function $f(z) = \overline{z}$ is analytic at z = 0.
- 3. Find the Taylor's series expansion of the function $f(z) = \ln z$ about z = 1. Find also the region of convergence.
- 4. Solve the p.d.e. $p^2 + q^2 = 1$.
- 5. Find the Fourier series of the following function by extending it to a periodic function:

$$f(x) = 3 \qquad 0 < x \le 5$$

$$= -3 -5 < x \le 0$$

Show that the Fourier series does not converge to f(x) at x = 0.

6. Show that the probability of occurrence of only one of the events 'A' and 'B' is

$$P(A) + P(B) - 2P(AB)$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Show that the function $u = e^{-y} \cos x$ is harmonic and find the corresponding analytic function f(z). What is the imaginary part of this analytic function?

- b) Expand the function $f(z) = \frac{z}{(z-1)(z-3)}$ about z=1 in the region 0 < |z-1| < 2. Which kind of series is it? Find also the residue term.
- 8. a) Find the integral surface of the p.d.e. $(y-z)p + (z-x)q = x-y \,, \quad \text{which passes through the }$ curve xy=4, z=0.
 - b) The ends x = 0 and x = l of a finite wire are maintained at zero temperature. Given that the temperature u(x,t) = f(x) at t = 0. Determine the temperature at a subsequent time 't'. [Assume c^2 is the diffusivity of the material of the wire].
- 9. a) Find a Fourier series of the function $f(x) = x x^2$, $-\pi < x \le \pi$.

Hence find the value of the series

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

- b) Find the sine series which represents the function $f(x) = \pi x$ in $0 < x < \pi$.
- 10. a) Describe the Newton-Raphson method for solving an algebraic equation.
 - b) Using Euler's method with h = 0.1, find the solution of $\frac{dy}{dx} = x^2 + y^2, \ y(0) = 0 \text{ at } x = 0.6.$

[Correct up to 3 decimal places] 7 + 8

6

3160

- 11. a) The p.d.f. of a random variable X is f(x) = k(x-1)(2-x) for $1 \le x \le 2$. Determine the value of k, the distribution function F(x) and $P\left(\frac{5}{4} \le X \le \frac{3}{2}\right)$.
 - b) If X has a binomial distribution with parameter 'n' and 'p', then show that
 - i) its mean is np and

ii) variance is *npq*.

7 + 8

=========