

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 ELECTRICAL ENGINEERING MATERIALS SEMESTER - 3

Time: 3 Hours] [Full Marks: 70

GROUP - A										
(Multiple Choice Type Questions)										
•	Choose the correct answer from the given alternatives for any ten of the following:									
2					$10 \times 1 = 10$					
	i)	The	average drift velocity v_x of ele	ctrons	in a metal is related to the electric field					
		E &	the collision time, τ as	•						
•		a)	$\sqrt{\frac{eE\tau}{m}}$	b)	$\sqrt{\frac{m}{eE\tau}}$					
		c)	<u>eEτ</u> m	d)	$\frac{m}{eE\tau}$.					
	ii)	the								
		a)	paramagnetic compounds	b)	ferromagnetic compounds					
		c)	anti-ferromagnetic compound	s d)	ferrimagnetic compounds.					
7	iii)	Diel								
		a)	magnetic material	b)	conducting material					
•		c)	insulating material	d)	semiconducting material.					
	iv)	Edd	y current loss is proportional to	o the						
•		a)	frequency	b)	square of the frequency					
		c)	square root of the frequency	d)	cube of the frequency.					
	v)	Ferr	ites are							
		a)	ferromagnetic material	b)	ferrimagnetic material					
		c)	paramagnetic material	d)	diamagnetic material.					

VIJ	Iner	mai conductivity of a supercond	uctor					
•	a)	re	•					
	b)	re						
	c)	is independent of temperature	, ,					
	d)	increases initially & then decre	eases w	with increase in temperature.				
vii)	With insertion of a dielectric, the capacity of a capacitor							
	a)	increases	b)	decreases				
	c)	does not change	d)	changes arbitrarily.				
viii)	If k is the thermal conductivity & a is the electrical conductivity, then Lorent							
	num	ber is given by						
	a)	$\frac{k}{a}$	b)	$\frac{k}{aT}$				
	c)	$\frac{kT}{a}$	d)	$\frac{a}{kT}$.				
ix)	Sulphur hexafluoride is a							
	a)	ferromagnetic material	b)	solid insulator material				
	c)	gaseous dielectric material	d)	good conducting material.				
x)	Which of the following materials can be used in cable shields?							
	a)	Copper	b)	Aluminium				
	c)	Cast iron	d)	Lead.				
xi)	The material with lowest resisptivity is							
	a)	constant an	b) ,	german silver				
	c)	magnanin	d)	nichrome.				
xii)	Breakdown in a dielectric may occur due to							
	a) .	electric breakdown	b)	thermal breakdown				
	c)	electrochemical breakdown	d)	any of these.				

44205 (17/12)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3\times5=15$

- 2. a) What is Curie temperature?
 - b) Derive the Curie-Weiss law of Ferromagnetism.

1 + 4

- 3. a) What is a meant by mobility of electrons in a metal?
 - b) Calculate the mobility of electrons in copper if the number of free electrons
 - per unit volume of copper is 8.5×10^{-28} m⁻³, & the resistivity of copper is 1.7×10^{-8} Ω m.
- 4. Show that the imaginary part of dielectric constant of a dielectric material gives rise to absorption of energy by the material from an alternating field.
- 5. Compare the merits & demerits of the uses of Cu & Al as conductors for power transmission lines.
- 6. Briefly describe the principle of operation of solar cell.

5

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. a) Distinguish between ferromagnetic, ferrimagnetic & anti-ferromagnetic materials.
 - b) Define the term 'spontaneous magnetization'. Derive the relation between relative permeability (μ_r) & magnetic susceptibility (χ) of a magnetic material.
 - c) Discuss the various uses of ferrites.

6 + 6 + 3

- 8. a) Explain free electron theory of metals.
 - b) Derive Widermann-Franz law in connection with thermal conductivity of metals.
 - c) What are the factors on which the fusing current depends?

6 + 6 + 3

- 9. a) Explain the term 'Superconductivity'. Name some of the important superconducting elements, compounds & alloys.
 - b) State the application of superconductor's.
 - c) State the desirable properties of high resistivity materials.

6 + 3 + 6

- 10. a) Explain the mechanism of polarisation in dielectric materials.
 - b) Derive the expression of orientational polarization in terms of electric field & temperature.
 - The dielectric constant of helium measured at 0°C & at 1 atmosphere is $1\cdot0000684$. Under these conditions, the gas contains $2\cdot7\times10^{25}$ atoms / m 3 . Calculate the radius of the electron cloud (atomic radius) & the displacement χ when a helium atom is subjected to a field of 10 6 V/m. 4+6+5
- 11. Write notes on any two of the following:

 $2 \times 7 \frac{1}{2}$

- a) Thermionic converters
- b) MHD generators
- c) Fuel cell.

END