	Uiteah
Name:	
Roll No.:	A Description and Explana
Invigilator's Signature :	

CS/B.TECH(CHE)/SEM-8/CHE-804A/2012 2012 NANOTECHNOLOGY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

 $10 \times 1 = 10$

- i) Nanotechnology gives us the ability to manipulate minimum material dimensions of
 - a) the width of human hair
 - b) the width of the head of a pin
 - c) the atomic level
 - d) the wavelength of ultraviolet light.
- ii) Silver nanoparticles are used in
 - a) car paints
- b) medicinal bandages
- c) sports goods
- d) sunscreens.

8364 [Turn over

CS/B.TECH(CHE)/SEM-8/CHE-804A/2012

- iii) Lab-on-a-chip technology is
 - a) used in the semiconductor industry
 - b) used as a hand-held device for diagnostic purposes
 - c) used in the automotive industry
 - d) used only for laboratory purposes.
- iv) Optical Microscopy
 - a) is limited by the wavelength of visible light
 - b) allows us to see viruses
 - c) allows us to see red blood cells
 - d) can distinguish in the nanometer range.
- v) Ratio of surface area to volume
 - a) increases as objects get smaller
 - b) decreases as objects get smaller
 - c) has no relation with the size of the object
 - d) none of these.
- vi) Atomic Force Microscope tips are generally made of
 - a) silicon

- b) germanium
- c) platinum
- d) tungsten.
- vii) Scanning tunneling microscope works best
 - a) with conductor materials
 - b) with insulator materials
 - c) with metalloids
 - d) with semiconductor materials.

8364

- viii) Transmission Electron Microscope
 - a) can see minimum particles of size 0.2 nm
 - b) can see minimum particles of size 2 nm
 - c) can see minimum particles of size 1 nm
 - d) can see minimum particles of size 0.1 nm.
- ix) Dendrimers are
 - a) essentially polymers
 - b) branched monomers
 - c) have lengths in the range of microns
 - d) are monolithic structures.
- x) Fullerenes are
 - a) cabon nano-tubes
 - b) a form or carbon
 - c) same as graphite
 - d) are non-carbonaceous material.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Explain molecular self assembly with an example. Why is molecular self assembly preferred over conventional fabrication techniques?
- 3. What is dip-pen lithography? Where is it used?
- 4. Describe two processes by which carbon nanotubes are made.
- 5. What are nano-shells? Where are they used in health-care application?
- 6. What is the goal of drug-delivery systems? How is lab-on-chip technology used in advanced drug delivery?

CS/B.TECH(CHE)/SEM-8/CHE-804A/2012

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 7. What is the role of resist in photolithography? Draw a schematic to explain steps in photolithography.
- 8. What is soft lithography? Describe the process with a schematic.
- 9. Explain the process of self-assembling in mono-layers. Draw a schematic of the process.
- 10. What are linkers and spacers? Explain with examples.
- 11. Explain two nano-lithography processes. What are some of the special applications of each process?

8364 4