Name :	
Roll No. :	An Annual With and Excellent
Invigilator's Signature :	

2013 NUMERICAL METHODS IN CHEMICAL ENGINEERING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) For an equation like $x^2 = 0$, a root exists at x = 0. The

bisection method cannot be adopted to solve this equation in spite of the root existing at x = 0 becuase the function $f(x) = x^2$

- a) is a polynomial
- b) has repeated roots at x = 0
- c) is always non-negative
- d) slope is zero at x = 0.

6315(O)

ii) The secant method formula for finding the square root of a real number *R* from the equation $x^2 - R = 0$ is

a)
$$\frac{x_i x_{i-1} + R}{x_i + x_{i-1}}$$
 b) $\frac{x_i x_{i-1}}{x_i + x_{i-1}}$
c) $\frac{1}{2} \left(x_i + \frac{R}{x_i} \right)$ d) $\frac{2x_i^2 + x_i x_{i-1} - R}{x_i + x_{i-1}}$.

iii) In final value problem, the values of the dependent variable and/or their derivatives are all known

- a) at the final value of the independent variable
- b) at the initial and final value of the independent variable
- c) at any value of the independent variable
- d) at more than one point of the independent variable.
- iv) If for a real continuous function f(x), f(a)f(b) < 0, then in the range of [a,b] for f(x)=0, there is (are)
 - a) one root
 - b) undeterminable number of roots
 - c) no root
 - d) at least one root.
- v) Modified Euler's Method is
 - a) implicit method b) explicit method
 - c) both of these d) none of these.

6315(O)

- vi) Pivoting is very much essential because
 - a) Determinant of the coefficient matrix should be greater than zero
 - b) Pivot element should not have very large value compared to the elements of the matrix
 - c) It reduces the possibility of division by zero
 - d) Chance of convergence is higher.
- vii) Least square method is used to derive
 - a) A curve that maximize the discrepancy between the data points and the curve
 - b) A curve that minimize the discrepancy between the data points and the curve
 - c) A straight line that maximize the discrepancy between the data points and the curve
 - d) A straight line that minimize the discrepancy between the data points and the curve.
- viii) Simpson's 1/3 formula always requires
 - a) even number of ordinates
 - b) odd number of ordinates
 - c) even or odd number of ordinates
 - d) none of these.
- ix) Secant methods are used to calculate the roots of the functions whose
 - a) derivatives are zero
 - b) derivatives are very large
 - c) derivatives are very small
 - d) derivatives may be extremely difficult or inconvenient to evaluate.

6315(O)

.....

In trapezoidal Rule, the order of h in the total error X)

- b) 4 3 a)
- 2 d) none of these. c)

xi) When Gauss elimination method is used to solve AX = B, A is transformed to a

- unit matrix a)
- b) lower triangular matrix
- diagonally dominant matrix c)
- upper triangular matrix. d)
- xii) In successive over relaxation method the value of relaxation parameter varies
 - between 1 and 2 b) between 0 and 1 a)
 - between -1 and 1d) between -1 and 0. c)

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Prove that the rate of convergence of Newton - Raphson a) method is quadratic.
 - b) What does speed of convergence signify ? 4 + 1
- Find the bubble point of a binary system liquid mixture 3. (40 mole % A and 60 mole % B) at 760.0 mm Hg.

In
$$P^{sat}(A) = \frac{-3998 \cdot 352}{T} + 17 \cdot 9$$

In $P^{sat}(B) = \frac{-5764 \cdot 721}{T} + 21 \cdot 764$

P in mm of Hg. and *T* in *K*. Using secant method assume the liquid mix is ideal and $T_{10} = 95 \cdot 0^{\circ}$ C and $T_{20} = 90 \cdot 0^{\circ}$ C. 5 6315(O) 4

4. a) Explain why Gauss - Seidel iterative method is not suitable for solving the following system of equations.
x + y + z = 3
x + y - z = 1
x - y + z = 1

b) Illustrate the concept of truncation error.
$$4 + 1$$

- 5. a) Let X_T and X_A denote respectively the true and approximate values of a number. Define the absolute error, relative error and percentage error in X_A .
 - b) Explain when the relative error is better indicator of the accuracy of a computation than the absolute error. 3 + 2
- 6. a) Give an example of boundary value problem.

b) Solve
$$\frac{dy}{dx} = x \cdot y$$
 for $x = 1$ taking $h = 0.5$

initial condition : y(0) = 1 1 + 4

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) For CH₃Cl (Methyl Chloride), following physical properties are given :

Vapour pressure (60°C) = 13.76 bar, $P_c = 66.8$ bar, $T_c = 416.3$ K, W = 0.153. It obeys the RK equation. $P = \frac{RT}{V-b} - \frac{a}{T^{1/2}V(V+b)}$

where

$$a = \frac{0.42748R^2 - T_C^{2.5}}{P_C}$$
 and $b = \frac{0.08664RT_C}{P_C}$

6315(O)

Find the molar volume of saturated liquid using Newton-Raphson method with initial guess $V^0 = b$. How can you get the molar volume of saturated vapour? What is the basis of obtaining the initial guess for any iterative method to be applicable for practical problem?

- b) Deduce Secant formula from Newton-Raphson formula.What is the advantage of Secant Method ? 12 + 3
- 8. a) Describe TDMA based on following linear system :

A11* \times 1 + A12* \times 2 = D1 A21* \times 1 + A22* \times 2 + A23* \times 3 = D2 A31* \times 1 + A32* \times 2 + A33* \times 3 = D4 What are the practical applications of TDMA ?

b) The system shown below is at steady state. Compute the concentration of five tanks using Gauss-Seidel iterative method with relaxation factor 1.5, if the flows are given by

6315(O)

Make minimum 3 iteration.

The system is well mixed and the concentration is uniform throughout the tank. All C_i is given in mg/m³ and the flow rates are given in m³/min. 8 + 7

- 9. a) Using Runga-Kutta method of order four with h = 1 find y (1), given $y' = y - x^2$, y(0) = 1.5.
 - b) You perform the experiments and determine the following values of heat capacity C at various temperatures T for a gas :

Т	-50	-30	0	60	90	110
С	1270	1280	1350	1480	1580	1700

7

Determine a linear and quadractic model to predict C as as a function of T. Calculate $\sum R_i^2$ 6 + 9

6315(O)

10. a) A series occurring in a CSTR of volume 1000lt $A \xrightarrow{K_1} B \xrightarrow{K_2} C$ $K_1 = 0.1 \text{ hr}^{-1}, K_2 = 0.2 \text{ hr}^{-1}$

Inlet concentration by A is 1 mol/lt, $C_{BO} = 0$, $C_{CO} = 0$

Find the concentration at time 12, 15, 20 minutes also find the steady state concentration.

b) Solve $f(x)=x^3-5x^2+7x-3=0$ by Newton Raphson Method, It is observed that a good initial guess like $x^{(0)} = 0$ requires a large number of iterations to find one root at x = 1.

Justify the above observation and suggest some modification to reduce the number of iterations. 9 + 6

- 11. a) Consider a steel plate of size of 15 × 15 sq. cm. If two of the sides are held at 200°C and other two sides are held at 0°C. What are the steady state temperature at interior point assuming grid size 5 × 5 sq. cm. (solve the set of equation by Gauss-elimination method)
 - b) Apply Crank-Nicholson Method to solve the unsteadystate conduction problem :

Where : IC : $T(x, 0) = 100 (1-x^2)$ BC : T(0, T) = 100.0T (1, t) = 0.0

Assuming $M = (\Delta x)^2 / \Delta t / \alpha = 2.5$ and $\alpha = 1.0$ and the rectangular heat slab consists of four equal slices, compute the temperature profile with length. 5 + 10

6315(O)