	<u>Uffech</u>
Name:	\$
Roll No.:	To Annual Williamshife and Explana
Inviailator's Signature :	

CS/B.Tech(CHE)/OLD/SEM-6/CHE-603/2013

2013 INSTRUMENTATION AND PROCESS CONTROL

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

i) What is the Laplace transform of $\sin t$?

a)
$$\frac{1}{s^2 + 1}$$

b)
$$\frac{s}{s^2+1}$$

c)
$$\frac{1}{s^2 - 1}$$

d)
$$\frac{s}{s^2-1}$$
.

ii) Response of a system to a sinusoidal input is called

- a) Impulse response
- o) Unit step response
- c) Frequency response
- d) None of these.

6215(O) [Turn over

CS/B.Tech(CHE)/OLD/SEM-6/CHE-603/2013

- iii) Time constant is
 - a) The time taken by the controlled variable to reach63.2% of its full change
 - b) Same as transportation lag
 - c) Same as dead time
 - d) The time required by the measured variable to reach 63.2% to its ultimate change.
- iv) Degree to which an instrument indicates the changes in measured variable without dynamic error is called
 - a) Speed of response
 - b) Reproducibility of instrument
 - c) Fidelity
 - d) its static characteristics.
- v) Which of the following relates the absorption and evolution of heat at the *j* junctions of a thermocouple to the current flow in the circuit?
 - a) Seebeck effect
- b) Peltier effect
- c) Joul heating effect
- d) Thomson effect.
- vi) Pirani gauge is used to measure
 - a) Measurement of very high pressure
 - b) Measurement of very high vacuum
 - c) Liquid level under pressure
 - d) Liquid level at atmospheric pressure.

- vii) Hot wire anemometer is used for the measurement
 - a) Flow rate of fluid
 - b) Very high temperature
 - c) Thermal conductivity of gases
 - d) None of these.
- viii) Thermistor is a
 - a) Semiconductor whose resistance decreases with temperature rise
 - b) Metal whose resistance increases linearly with temperature rise
 - c) Metal whose resistance does not vary with temperature
 - d) Device for measuring nuclear radiation.
- ix) The frequency at which maximum amplitude ratio is attained is called
 - a) Corner frequency b)
- b) Resonant frequency
 - c) Cross over frequency d)
 - d) Natural frequency.
- x) On-Off control is a special case of Control.
 - a) Proportional (P)
 - b) Proportional Integral (PI)
 - c) Proportional Derivative (PD)
 - d) Proportional Integral Derivative (PID).

CS/B.Tech(CHE)/OLD/SEM-6/CHE-603/2013

- xi) Which of the following controllers has got the smallest maximum deviation?
 - a) Proportional (P)
 - b) Proportional Integral (PI)
 - c) Proportional Derivative (PD)
 - d) Proportional Integral Derivative (PID).
- xii) Which stability method uses open loop transfer function for stability analysis?
 - a) Bode

- b) Root locus
- c) Nyquist
- d) All of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- What is dynamic measurement? What is dead zone of an instrument? Elaborate the statement "precise measurement may not necessarily be accurate or vice versa.
 1 + 1 + 3
- 3. What are RTDs and thermocouples?
- 4. What is the steady state output of a process $\left(G_p(s) = \frac{2s}{s^2 + 3s + 2}\right) \text{ for a step input of magnitude 5?}$

5. The characteristic equation of a system is given by

$$s^4 + 3s^3 + 5s^2 + 4s + 2 = 0$$

Determine the stability of the system by Routh Harwitz method.

6. Write the difference between closed and open loop systems.

Why the derivative controller cannot be used independently?

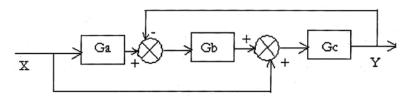
3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Describe the construction and operation of a pirani gauge. 5
 - b) Discuss the principle of operation of any one composition measurement device.
 - c) With a schematic diagram explain construction and operation of a total radiation pyrometer.
- 8. a) Unit impulse response of a system is given by $y(t) = (t/\tau^2)e^{-t/\tau}$ where the terms have their usual meaning. Obtain the expression for unit step response of this system.



5

- b) Liquid flows into a tank at the rate of q m³/s. The tank has three vertical walls and one sloping outwards at an angle β to the vertical. The base of the tank is a square with sides of length x m and the average operating level of liquid in the tank is h_s m. If the relationship between liquid level and flow out of the tank at any instant is linear, develop a formula for determining the time constant of the system.
- 9. a) A step change of magnitude 10 is introduced into a system having the transfer function $\frac{Y(s)}{X(s)} = \frac{10}{s^2 + s + 0.16}$.

Determine Per cent Overshoot, Rise time, Maximum value of Y(t), Period of oscillation.

- b) Discuss the utility of phase and gain margin in stability analysis. What is proportional band of a controller? 5
- 10. a) Determine the transfer function Y(s)/X(s) for the block diagram as shown below. Express the results in terms of G_a , G_b and G_c .

b) Consider the feed back control system for which the open loop transfer function is given by $G(s) = \frac{K}{s(s+2)(s+1)}.$ Showing all the steps clearly,

sketch the root locus diagram for the system. 10

6215(O)

11. a) The overall transfer function of a system is given by

$$Gp(s) = \frac{2.5.e^{-0.1S}}{3s + 1}$$

Find the PID controller settings using Ziegler Nichols rules.

b) Explain cascade control and feed forward control. 7