

CS/B.TECH(CHE)(N)/SEM-5/CHE-502/2012-13 2012

CHEMICAL REACTION ENGINEERING

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The dimensions of rate constant for reaction $A \rightarrow B$ are (litre/gmole)/min. The reaction order is
a) one
b) two
c) three
d) zero.
ii) Arrhenius equation shows the variation of \qquad with temperature.
a) Reaction rate
b) Rate constant
c) Energy of activation
d) Frequency factor.

CS/B.TECH(CHE)(N)/SEM-5/CHE-502/2012-13

iii) Catalytic action in a catalytic chemical reaction follows from the ability of catalyst to change the rin oren
a) activation energy
b) equilibrium constant
c) heat of reaction
d) none of these.
iv) For the reaction $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{SO}_{3}$ carried out in presence of $\mathrm{V}_{2} \mathrm{O}_{5}$ catalyst, the reaction
a) is considered as homogeneous
b) is considered as heterogeneous
c) may be either homogeneous or heterogeneous
d) none of these.
v) The units of frequency factor in Arrhenius equation
a) is same as that of the rate constant
b) is different from the units of the rate constant
c) is unit less
d) none of these.
vi) Which of the following is a characteristic of an elementary reaction?
a) The molecularity and order of the reaction is the same
b) The reaction rate constant is zero
c) The rate of the reaction is constant
d) The order of the reaction is always 1 .

vii) For any reaction, we may write conversion as a function of

a) time
b) temperature
c) concentration
d) all of these.
viii) For reaction under pore diffusion regime, the reaction rate
a) varies directly with catalyst particle size
b) varies inversely with catalyst particle size
c) is independent of catalyst particle size
d) none of these.
ix) Under strong pore diffusion regime an nth order reaction behaves like a
a) $\frac{(n+1)}{2}$ order reaction
b) $\frac{(n-1)}{2}$ order reaction
c) zero order reaction
d) nth order reaction.
x) What will be the conversion, if we use a single PFR volume V instead of N number of PFR connected in series combination with a total volume of V ?
a) Less
b) Equal
c) More
d) None of these.
xi) Unreacted core model represents the reaction involving
a) combustion of coal
b) roasting of sulfide ores
c) carbon disulphide manufacturing
d) none of these.

CS/B.TECH(CHE)(N)/SEM-5/CHE-502/2012-13

xii) For an autocatalytic reactor, for conversion up to the maximum rate, the suitable reactor setrpis,
a) CSTR
b) PFR
c) recycle reactor
d) CSTR followed by PFR.
GROUP - B

(Short Answer Type Questions)

Answer any three of the following $\quad 3 \times 5=15$
2. At 500 K the rate of a bimolecular reaction is ten times the rate at 400 K . Find the activation energy of this reaction :
a) From Arrhenius' law
b) From Collision theory.
3. Write any two of the following :
i) Space time and Space volume
ii) Significance of Residence Time Distribution
iii) Derive the mathematical expression for rate constant of nth order reaction
iv) Limitations of shrinking core model.
4. Derive the expression of rate of a 2 nd order irreversible biomolecular reaction $(A+B \rightarrow R)$.
5. Prove that for a second order irreversible bimolecular reaction $A+B \rightarrow$ Products, $\ln \left(M-X_{A}\right) / M\left(1-X_{A}\right)=C_{A 0}(M-1) K t$ where $M=C_{B 0} / C_{A 0}, M \neq 1$ (Symbols have their usual meaning).
6. Find the first order rate constant for the disappearance of A in the gas reaction $2 A \rightarrow R$ if, on holding the pressure constant, the volume of the reaction mixture is starting with 80% A decreases by 20% in 3 min .

Answer any three of the following.
$3 \times 15=45$
7. a) Obtain the half-life period for a first order isothermal constant volume reaction.
b) A reaction $A \rightarrow P$ is carried out in batch reactor at different initial concentrations. Half-life for each run is noted. Calculate order of reaction and the rate constant from the half-life data given in table below :

$C_{A 0}\left(\mathrm{kmol} / \mathrm{m}^{3}\right)$	10	18.5	30
$t_{1 / 2}(\mathrm{~s})$	100.0	54.0	33.3

c) For the reaction in series $A \xrightarrow{k_{1}} R \xrightarrow{k_{2}} S$ carried out in a batch reactor. Prove that slowest step is the rate determining step. $3+8+4$
8. a) The primary reaction occurring in homogeneous decomposition of nitrous oxide is found to be $\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\frac{1}{2} \mathrm{O}_{2}$ with rate $-\mathrm{r}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{K}_{1}\left[\mathrm{~N}_{2} \mathrm{O}\right]^{2} / 1+\mathrm{K}_{2}\left[\mathrm{~N}_{2} \mathrm{O}\right]$. Derive a mechanism to explain this observed rate.

CS/B.TECH(CHE)(N)/SEM-5/CHE-502/2012-13

b) The aqueous reaction $A \rightarrow R+S$ proceeds as follows

Time, \min	0	36	65	100	160	∞
C_{A} $\mathrm{~mol} / \mathrm{litre}$	$0 \cdot 1823$	$0 \cdot 1453$	$0 \cdot 1216$	$0 \cdot 1025$	$0 \cdot 0795$	$0 \cdot 0494$

$C_{A 0}=0 \cdot 1823 \mathrm{~mol} / \mathrm{lit}, \quad C_{R 0}=0, \quad C_{S 0}=55 \mathrm{~mol} / \mathrm{lit}$, $M=C_{R 0} / C_{A 0}$ Derive the rate equation to represent the reaction.

$$
7+8
$$

9. a) Deduce the performance equation of a recycle reactor.
b) At 600 K , the gas phase reaction $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ has rate constant $k_{1}=500$ litre $/ \mathrm{mol} . \mathrm{hr}$ and $k_{2}=0.032 \mathrm{hr}^{-1}$.

If a plug flow reactor is to be fed $600 \mathrm{~m}^{3} / \mathrm{hr}$ of gas containing $60 \% \mathrm{Br}_{2}, 30 \% \mathrm{C}_{2} \mathrm{H}_{4}$ and 10% inerts by volume at 600 K and 1.5 atm compute the volume of reactor vessel required to obtain 60% of the maximum conversion.

10. a) After 8 min in a batch reactor, reactant ($\left.\mathrm{C}_{\mathrm{AQ}}=\mathrm{mol} / \mathrm{lit}\right)$ is 80% converted, after 18 min conversion is 90%. Find the rate equation to represent this reaction.
b) At $649^{\circ} \mathrm{C}$ phosphine $\left(\mathrm{PH}_{3}\right)$ decomposes as follows : $4 \mathrm{PH}_{3} \longrightarrow \mathrm{P}_{4}(\mathrm{~g})+6 \mathrm{H}_{2} ;-\mathrm{r}_{\mathrm{PHOS}}=\left(10 \mathrm{hr}^{-1}\right) \mathrm{C}_{\mathrm{PH}_{3}}$. What size of plug flow reactor operating at $649^{\circ} \mathrm{C}$ and 4.6 atm pressure is needed for 75 per cent conversion of $10 \mathrm{~mol} / \mathrm{ltr}$ of feed contain 50 per cent phosphine $\left(\mathrm{PH}_{3}\right)$ and rest inert. Feed rate is $1.86 \mathrm{~kg} \mathrm{~mol} / \mathrm{hr}$. Determine the size of PFR.
11. a) What is the expression for 'Dispersion number' ? What will be its value for PFT and MFR ?
b) For reactions other than first order, knowledge of the RTD is not sufficient to predict conversion. What is the other parameter ? Why first order reaction need not this parameter?
c) Write down the names of different models of a real reactor according to the number of adjustable parameters that are extracted from RTD data. $5+5+5$

