

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
( Multiple Choice Type Questions )

1. Choose the correct alternatives for the following :

$$
10 \times 1=10
$$

i) The probability that a leap wear selected at random will contain 53 Wednesdays is
a) $\frac{3}{4}$
b) $\frac{2}{7}$
c) $\frac{1}{3}$
d) $\frac{4}{9}$.
ii) The Variance of a random wariable $X$ is
a) $\quad[E(X)]^{2}$
b) $E\left(X^{2}\right)$
c) $\quad E\left(X^{2}\right)-[E(X)]^{2}$
d) $\quad\left[E\left(X^{2}\right)\right]^{2}-[E(X)]$.
iii) The period of the function $f(x)=2\left|\cos ^{2} x\right|$ is
a) $\pi$
b) $2 \pi$
c) $\frac{2 \pi}{3}$
d) $\frac{\pi}{3}$.

## CS/B.TECH/FT (O)/CHE (O)/SEM-3/M-315/2011-12 © ©

iv) The function $f(x)=k \sin x, 0 \leq x<\pi$ is

a) Half wave Rectifier
b) Full wave rectifier
c) Triangular waveform
d) none of these.
v) $\quad b_{y x} \times b_{x y}$ (where $b_{y x}, b_{x y}$ and $r$ are regression and correlation coefficients) is
a) $r$
b) $\quad r^{2}$
c) $\frac{1}{r}$
d) none of these.
vi) The order and degree of $\sqrt{\frac{\partial z}{\partial x}}+\sqrt{\frac{\partial z}{\partial y}}=x-y$
(where $z=f(x, y)$ ) is
a) 1, 4
b) 1,2
c) 1,3
d) 1,1 .
vii) The Lagrange's differential equation for linear first order partial derivative (where all the symbols have usual meanings) is
a) $\quad P p+Q q=R$
b) $\quad P^{2} \mathrm{Q}^{2}=R$
c) $\quad P q+Q p=R$
d) $P q-Q p=R$.
viii) The order of Bessel's differential equation is
a) 1
b) 2
c) $n$
d) 4 .


Uresh
ix) The general solution of Legendre's equation where all the symbols have usual meanings) is

a) $\quad A P_{n}(x)+B Q_{n}(x)$
b) $\quad P_{n}(x) Q_{n}(x)$
c) $\frac{P_{n}(x)}{Q_{n}(x)}$
d) $A P_{n}(x)-B Q_{n}(x)$.
x) The mean and standard deviation of a binomial distribution are respectively 4 and $\sqrt{\frac{8}{3}}$. The values of $n$ and $p$ are
a) $11, \frac{3}{4}$
b) $12, \frac{2}{7}$
c) $12, \frac{1}{3}$
d) $\quad 13, \frac{3}{8}$.

## GROUP - B

## ( Short Answer Type Questions )

Answer any three of the following. $\quad 3 \times 5=15$
2. Solve $\left(D^{2}-2 D D^{\prime}\right) z=e^{2 x}+x^{2} y$, where $\left(D=\frac{\partial}{\partial x}, D^{\prime}=\frac{\partial}{\partial x y}\right)$.
3. Solve $\sqrt{p}+\sqrt{q}=1$, where $\left(P=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}\right)$.

CS/B.TECH/FT (O)/CHE (O)/SEM-3/M-315/2011-12© URech
4. Find the mean of the Binomial distribution with parameters $n, p$.
5. Let $x$ and $y$ be two variables whose means are $\bar{x}$ and $\bar{y}$; standard deviations are $\sigma_{x}$ and $\sigma_{y}$ respectively. If $u=\frac{x-\bar{x}}{\sigma_{x}}$ and $v=\frac{y-\bar{y}}{\sigma_{y}}$, then show that $r_{x y}=\operatorname{Cov}(u, v)$.
6. Find the Fourier series of the function $f(x)=x-x^{2}$, $-\pi<x \leq \pi$.
7. Show that when $n$ is a positive integer, $J_{-\mathrm{n}}(x)=(-1)^{n} J_{n}(x)$.
8. The 5 pair of values of $x$ and $y$ are such that $\operatorname{Var}(x)=6$, $\operatorname{Var}(y)=2$ and $r_{x y}=0.98$ (where symbols have their usual meanings). Find $\operatorname{Var}(2 x+3 y)$.

## GROUP - C

## ( Long Answer Type Questions )

Answer any three of the following. $3 \times 15=45$
9. a) If $x=4 y+5$ and $y=k x+4$ be two regression equations of $x$ on $y$ and $y$ on $x$ respectively, then find the interval in which $k$ lies.
b) Prove that - $1 \leq r_{x y} \leq 1$ (where $r_{x y}$ is the correlation coefficient between two variables $x$ and $y$ ).

viresh
c) The bivariate $(U, V)$ is related with the bivariate $(X, Y)$ by the two relations $4 U=2 X+7$ and $6 V=2 Y-15$. Given a regression coefficient of $Y$ on $X$ is 3 . Find the regression coefficient of $V$ on $U$.
10. a) Show that a function,
$f(x)=|x|,-1<x<1$
$=0 \quad$, elsewhere
is a possible probability density function and hence find the corresponding distribution function.
b) A radioactive source emits an average 2.5 particles per second. Calculate the probability that 2 or more particles will be emitted in an interval of 4 seconds.
c) If a person gets $\operatorname{Rs}(2 x+5)$ where $x$ denotes the number appearing when a balanced die is rolled once, then how much money can be expect in the long run per game?
11. a) Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$, given that $u(0, t)=u(l, t)=0, u(x, 0)=f(x)$ and $\frac{\partial u}{\partial t}(x, 0)=0,0<x<l$
b) $\quad$ Solve $(p+q)(z-x p-y q)=1$, where $\left(p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}\right)$.

CS/B.TECH/FT (O)/CHE (O)/SEM-3/M-315/2011-12 UR@
12. a) Solve $p^{2} x+q y=z$, where ( $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial x}$ ). S

b) Find the integral surface satisfying partial differential equation $(x-y) p+(y-x-z) q=z$ and passing through the circle $x^{2}+y^{2}=1, z=1$.
c) Find the general solution of the equation :

$$
z(p-q)=z^{2}+(x+y)^{2} \text { where }\left(p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}\right) .
$$

13. a) Find the Fourier series of the function $e^{-x}$ in the interval $0<x<2 \pi$.
b) Find the sine series which represents the function $f(x)=\pi-x$ in $0<x<\pi$.
c) Write Parseval's identity corresponding to Half range cosine series of the function $f(x)=x, 0<x<2$. Hence determine the sum of the series $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\ldots \ldots+\frac{1}{n^{4}}+\ldots .$.
14. a) Find the power series solution of the equation

$$
\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 y=0 \text {, given that } y(0)=4, y^{\prime}(0)=5 \text {. }
$$

b) Find the general solution of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$.
15. a) Express $x^{4}-3 x^{2}+x$ as a series solution in Legendre's polynomial.
b) Expand $\cos p x$ in $[-\pi, \pi]$ ( $p$ not being an integer) in Fourier series.

