	Utedh
Name :	
Roll No.:	A Description and Explored
Inviailator's Sianature :	

INDUSTRIAL STOICHIOMETRY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) A bypass stream in a chemical process is useful, because it
 - a) facilitates better control of the process
 - b) improves the conversion
 - c) increases the yield of products
 - d) none of these.
- ii) Enthalpy of formation of NH $_3$ is 46 kJ/kg. mole. The enthalpy change for the gaseous reaction, $2{\rm NH}_3 \rightarrow {\rm N}_2 + 3{\rm H}_2$, is equal to kJ/kg. mole.
 - a) 46

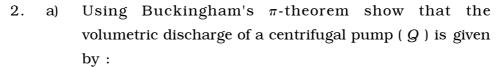
b) 92

c) - 23

d) - 92.

3263(N) [Turn over

- iii) A 'limiting reactant' is the one, which decides the in the chemical reaction.
 - a) equilibrium constant
 - b) conversion
 - c) rate constant
 - d) none of these.
- iv) Hess's law of constant heat summation is based on conservation of mass. It deals with
 - a) equilibrium constant
 - b) reaction rate
 - c) changes in heat of reaction
 - d) none of these.
- v) In a chemical process, the recycle stream is purged for
 - a) increasing the product yield
 - b) lienriching the product
 - c) limiting the inerts
 - d) heat conservation.
- vi) The percentage ratio of the partial pressure of the vapour to the vapour pressure of the liquid at the existing temperature is
 - a) termed as relative saturation
 - b) not a function of the composition of gas mixture
 - c) called percentage saturation
 - d) not a function of the nature of vapour.


- vii) To know the nature of relationship between x and y, which kind of graph paper is ideal for plotting of points (x, y) satisfying equation of the form $y = 2*10^x$?
 - a) Log-Log
- b) Semilog
- c) Triangular
- d) Power.
- viii) The temperature attained when a fuel is burnt in air or oxygen without gain or loss of heat is termed
 - a) the theoretical flame temperature
 - b) the maximum adiabatic flame temperature
 - c) the maximum theoretical flame temperature
 - d) none of these.
- ix) The negative of the standard heat of combustion of a fuel with $\rm H_2$ O ($\it 1$) as a combustion product is known

as

- a) lower heating value
- b) higher heating value
- c) the standard heat of formation
- d) none of these.
- x) The reference temperature during enthalpy calculation
 - a) must be same for all the streams of the plant
 - b) may not be same for all the streams of the plant
 - c) is always taken as 298 K
 - d) none of these.

GROUP - B

Answer any five questions.

$$Q = ND^{3} f \left[\frac{gH}{N^{2}D^{2}} \cdot \frac{\mu}{ND^{2}\rho} \right]$$

where, N is the speed of the pump in revolution per minute, D, the diameter of impeller, g, the acceleration due to gravity, μ , the viscosity of the fluid and ρ , the density of the fluid.

b) Using Raoult's or Henry's law for each substance (whichever one you think appropriate), calculate the pressure and gas phase composition (mole fraction) in a system containing a liquid that is 0.3 mole % $\rm N_2$ and 99.7 mole % water in equilibrium with $\rm N_2$ gas and water vapour at $80^{\circ}\rm C.$

Data: At 80°C:

Henry's constant for N $_2$ = 12.6 × 10 4 atm/mole fraction

Vapour pressure of water = $355 \cdot 1$ mm Hg. 6 + 6

3. a) A saturated solution of ${\rm MgSO_4}$ at 353 K ($80^{\circ}{\rm C}$) is cooled to 303 K ($30^{\circ}{\rm C}$) in a crystallizer. During cooling, mass equivalent to 4% solution is lost by evaporation of water. Calculate the quantity of the original saturated solution to be fed to the crystallizer per 1000 kg crystals of ${\rm MgSO_4}$. $7{\rm H_2}$ O. Solubilities of ${\rm MgSO_4}$ at 303 K ($30^{\circ}{\rm C}$) and 353 K ($80^{\circ}{\rm C}$) are 40.8 kg and 64.2 kg per 100 kg water respectively.

3263(N)

- b) 50 moles of liquid air is stored in a vessel at 1-013 bar pressure. Heat leaks through the vessel walls so that vaporization occurs. Under these conditions the relative volatility of N_2 to O_2 may be taken as constant at 2: 1. Calculate the mole of liquid left in the vessel, when the residual liquid composition is N_2 , 50 mole % and O_2 50 mole %.
- 4. a) State Raoult's Law with all the conditions.
 - b) Extimate the vapour phase composition at $60^{\circ}\mathrm{C}$ in equilibrium with a liquid mixture constaining 40 mole % Benzene (C_6 H $_6$) and 60 mole % Toluene (C_6 H $_5$ CH $_3$) . Also calculate the composition of the liquid mixture, which boils at $90^{\circ}\mathrm{C}$ and 760 torr. Vapour pressure data is given below in the table :

Temperature, °C	$oldsymbol{V_p}$ of Benzene ($oldsymbol{C_6}$ $oldsymbol{H_6}$), Torr	$egin{aligned} \mathbf{V_p} & ext{of Toluene} \\ (\mathbf{C_6} & \mathbf{H_5} & ext{CH}_3 \), \end{aligned}$
60	385	Torr 140
90	1013	408

3 + 9

- 5. Continuous fractionating column operating at a pressure of $101\cdot3$ kPa is to be used to separate 2500 kg/hr of a solution of benzene and toluene, containing $0\cdot50$ mass fraction benzene at 45° C, into an overhead product containing $0\cdot98$ mass fraction benzene at 15° C and a bottom product containing $0\cdot02$ mass fraction benzene at 50° C. A reflux ratio of $4\cdot0$ kg of reflux per kg of product is to be used. The feed will be liquid at its boiling point and the reflux will be returned to the column at 40° C.
 - a) Calculate the quantity of top and bottom product in kg/hr.

- b) Calculate the condenser duty, if all the vapour entering the condenser is condensed.
- c) Calculate the rate of heat input to the boiler, if the liquid leaving the reboiler is saturated liquid.

Data:

Enthalpy of feed mixture = 188.4 kJ/kgEnthalpy of overhead product = 62.94 kJ/kgEnthalpy of bottom product = 209.3 kJ/kgEnthalpy of vapour = 540 kJ/kg. 4+4+4

6. a) Calculate the heat required to bring 150 mol/hr of a stream containing 60% $\rm C_2~H_6~$ and 40% $\rm C_3~H_8~$ by volume from 0°C to 400°C.

Data

For
$$C_2^{}H_6^{}$$
 , $C_p^{}=0.04937+13.92\times10^{-5}$ $T-5.816\times10^{-8}$ T

+
$$7.280 \times 10^{-12}$$
 T³
For C₃ H₈ , C_p = 0.06803 + 22.59×10^{-5} T - 13.11×10^{-8} T + 31.71×10^{-12}

where, C_p is in kJ/mol. $^{\circ}C$ and T = temperature in $^{\circ}C$.

b) The standard heats of the following combustion reactions have been determined experimentally.

Use Hess's law to determine the heat of formation of ethane. 8+4

7. a) Define theoretical flame temperature and maximum adiabatic flame temperature. Calculate the theoretical flame temperature of a gas containing 20% CO and 80% $\rm N_2$ when burnt with 100% excess air, both air and gas initially being at 25°C.

Data : Heat capacity ($C_{p}\;$) = a + b T + c T 2 , $\;$ k cal/kmol. K

The values of the coefficients for different materials are as follows :

Material	а	b × 10 ³	c × 10 ⁶
CO_2	6.339	10.14	- 3.415
O_2	6.117	3.167	- 1.005
\overline{N}_2	6.457	1.389	- 0.069

The standard heat of formation of ${\rm CO_2}$ ($\Delta {\rm H^\circ_{298K}}$) = - 67636 kcal/mol.

b) A well stirred batch reactor wrapped in an electrical heating mantle is charged with a liquid reaction mixture. The reactant must be heated from an initial temperature of 25°C to 250°C befor the reaction can take place at a measureable rate. Using the data given below determine the time required for this heating to take place.

Reactant : mass = 1.5 kg, $C_V = 0.90$ kcal / kg°C

Reactor : mass = 3.0 Kg, $C_V = 0.12$ kcal / kg°C

Heating rate (Q) = 500 W

Negligible reaction and no-phase change during heating. Negligible energy added to the system by the stirrer.

$$(1+1+6)+4$$

8. An evaporator is to be fed with 1500 kg/hr of a solution containing 2% solute by weight at a temperature 45°C. It is to be concentrated to solution of 3% solute by weight in the evaporator operating at a pressure of 101·3 kPa in the vapour space. The heating surface is supplied with saturated steam at 198·54 kPa ($t_{\rm s}=120\,^{\circ}{\rm C}$). Calculate the weight of the vapour produced and the weight of the steam required. If the overall heat transfer coefficient of the evaporator is 1400 W/m 2 K, calculate the necessary heating surface.

The solution is so dilute that its specific heat, latent heat and boiling point may be assumed to be the same as those of water.

 $h_f = 188\cdot4~{\rm kJ/kg},~h_p = 419\cdot1~{\rm kJ/kg},~H_v = 2676~{\rm kJ/kg},$ $H_s = 2706~{\rm kJ/kg},~h_c = 503\cdot7~{\rm kJ/kg}.$