Time: 3 Hours 1

BIOMATERIALS (SEMESTER - 8)

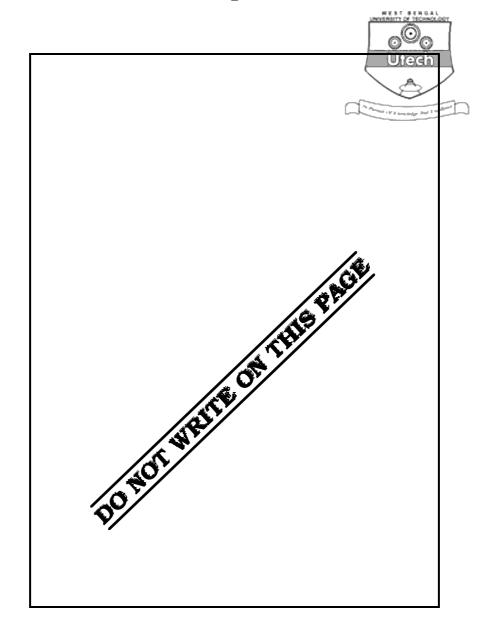
CS/B.Tech(BT)/SEM-8/ID-814C/09

[Full Marks: 70

1Signature of Invigilator	Utech A among the 1 miles
2	
Roll No. of the Candidate	
ENGINEERING & MANAGEMI)/SEM-8/ID-814C/09 ENT EXAMINATIONS, APRIL - 2009 S (SEMESTER - 8)

INSTRUCTIONS TO THE CANDIDATES:

- This Booklet is a Question-cum-Answer Booklet. The Booklet consists of 32 pages. The questions of this concerned subject commence from Page No. 3.
- 2. In Group - A, Questions are of Multiple Choice type. You have to write the correct choice in the box provided against each question.
 - b) For Groups - B & C you have to answer the questions in the space provided marked 'Answer Sheet'. Questions of Group - B are Short answer type. Questions of Group - C are Long answer type. Write on both sides of the paper.
- Fill in your Roll No. in the box provided as in your Admit Card before answering the questions. 3.
- 4. Read the instructions given inside carefully before answering.
- 5. You should not forget to write the corresponding question numbers while answering.
- 6. Do not write your name or put any special mark in the booklet that may disclose your identity, which will render you liable to disqualification. Any candidate found copying will be subject to Disciplinary Action under the relevant rules.
- 7. Use of Mobile Phone and Programmable Calculator is totally prohibited in the examination hall.
- You should return the booklet to the invigilator at the end of the examination and should not take any 8. page of this booklet with you outside the examination hall, which will lead to disqualification.
- Rough work, if necessary is to be done in this booklet only and cross it through. 9.


No additional sheets are to be used and no loose paper will be provided

FOR OFFICE USE / EVALUATION ONLY Marks Obtained Group - C Group - A Group - B **Question** Total Examiner's Number Marks Signature Marks **Obtained**

Head-Examiner	Co-Ordinator	Scrutineer

8884 C/E (27/04)

ENGINEERING & MANAGEMENT EXAMINATIONS, APRIL 2009

BIOMATERIALS

SEMESTER - 8

Time : 3 Hours]	[Full Marks : 70

GROUP - A

			(Multiple Choice ?	Гуре С	uestions)	
1.	Choo	ose the	e correct alternatives for any ten	of the	following:	10 × 1 = 10
	i)	Bion	naterials are			
		a)	natural polymer			
		b)	synthetic polymer			
		c)	both natural and synthetic pol	lymer		
		d)	biodegradable polymer.			
	ii)	Exai	mple of water soluble biopolyme	r is		
		a)	starch	b)	gelatin	
		c)	cellulose	d)	poly (glycolic acid) (PGA).
	iii)	β (1	\varnothing 4)-glycosidic linkages are for	ınd in		
		a)	starch	b)	cellulose	
		c)	gelatin	d)	collagen.	
	iv)		ch of the following carbohydra		•	
		a)	Hyaluronic acid	b)	Dextran	
		c)	Glycogen	d)	Heparin.	

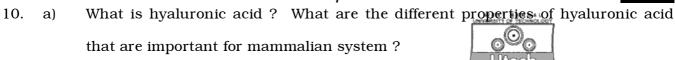
CS/B.T	ech(BT)/ SEM -8	8/ID-814C/09			: .
	v)	Polyc	dextrose is a polymer of		WEST STROAD	
		a)	D-glucose and sorbitol		Utech	
		b)	D-glucose		A Same of the sample of the same	
		c)	D-glucose and citric acid			
		d)	D-glucose, sorbitol and citric ac	eid.		
	vi)	Heav	y chains and light chains are joi	ned to	gether in silk protein fibroin by	
		a)	covalent bonding	b)	disulfide bonding	
		c)	H-bonding	d)	non-covalent bonding.	
	vii)	Poly-	caprolactone is used in			
		a)	cosmetics	b)	drug delivery device	
		c)	wound care	d)	none of these.	
	viii)	Facto	ors that accelerate polymer degra	adatior	1	
		a)	more hydrophilic backbones ar	d end	groups	
		b)	less crystalline			
		c)	more porosity			
		d)	all of these.			
	ix)	Leuc	onostoc mesenteroides are involv	ed the	fermentative production of	
		a)	biopol	b)	collagen	
		c)	dextran	d)	PLA.	

8884 C/E (27/04)

CS/B.	Tech(B	Г)/SEM	-8/ID-814C/09			
	x)	Repo	5 eat sequence of amino acids obs	erved i	n collagen	
		a)	Ala-Pro-Hypro	b)	Gly-Pro-Hyproech	
		c)	Gly-Ala-Ser	d)	Ala-Ser-Pro.	
	xi)	Zein	, a plant protein derived from			
		a)	rice	b)	wheat	
		c)	maize	d)	barley.	
	xii)	Fibr	oin is rich in			
		a)	alanine, valine and proline			
		b)	alanine, glutamic acid and asp	oartic a	cid	
		c)	glutamic acid, glycine and pro	line		
		d)	glycine, alanine and serine.			
			GROU	P – B		
			(Short Answer T	ype Qı	estions)	
			Answer any three	of the	following. 3	× 5 = 15
2.			protein present in silkworm th respect to its amino acid com			s of the 1 + 4
3.			extran produced by microbial ns of the product?	ferme	ntation ? What are the cor	nmercial 3 + 2
4.	Whic	ch enz	zyme is required for conversion	of gua	r gum to gel-forming polysacc	haride ?
	How	is it f	formed ?			1 + 4
5.		t are uction	two phases in Biopol productio a.	n? St	ate the role of propionic acid i	n Biopol 2 + 3
6.	Wha	t are j	polyphenols? How can they be	produc	eed by enzymatic method?	1 + 4
888	84 C/	E (27	7/04)			

GROUP - C

(Long Answer Type Questions)


Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Name two modified amino acid residues found in collagen. Discuss their role in maintaining the structure of collagen.
 - b) Name an organism that can be used for production of human recombinant collagen (rhC). Discuss the major problems for production of rhC. 2+8+1+4
- 8. a) Why is a polymer called isoelastic? How do you model an isoelastic polymer in terms of Maxwell's elements?
 - b) Draw a stress-strain diagram for different polymers like perfectly elastic, plastic and rubbery with charcteristic features.
 - c) What is the effect of temperature on the modulus of a polymer (10^9 G Pa at room temperature) for low-molecular weight, crystalline and highly cross-linked polymers. 2+5+5+3
- 9. a) The following data were obtained for a polymethacrylate (monomer is $H_2 C = CHCOOCH_3$):

Mean weight (g/mol)	40,000	80,000	60,000
Weight (g)	2.0	1.0	1.0
Number fraction	0.5	0.4	0.1

- i) Calculate number average molecular weight (Mn) weight average molecular weight (Mw) of the polymer.
- ii) What is the polydispersity index of the polymer?
- iii) Explain the sustainability of the material to be used as a prosthetic from the value of polydispersity index calculated.
- b) What is the glass transition temperature of a polymer? How does it vary with the molecular weight of the polymer? What is the significance of Tg in polymer processing? (3+3+4)+5

- b) Elaborate some medical and cosmetic applications of hyaluronic acid. (3 + 4) + 8
- 11. a) Briefly describe the pathway involved in the microbial biosynthesis of polyhydroxybutyrate (PHB).
 - b) What are the culture conditions that favour the increased production of PHB?
 - c) Which is more advantageous for industrial application-Biopol or PHB? Explain.

8 + 4 + 3

END