Name :	
Roll No. :	A dama of Exercising and Explored
Invigilator's Signature :	

CS/B.TECH(BME)/SEM-8/BME-801/2011 2011

MEDICAL IMAGE PROCESSING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

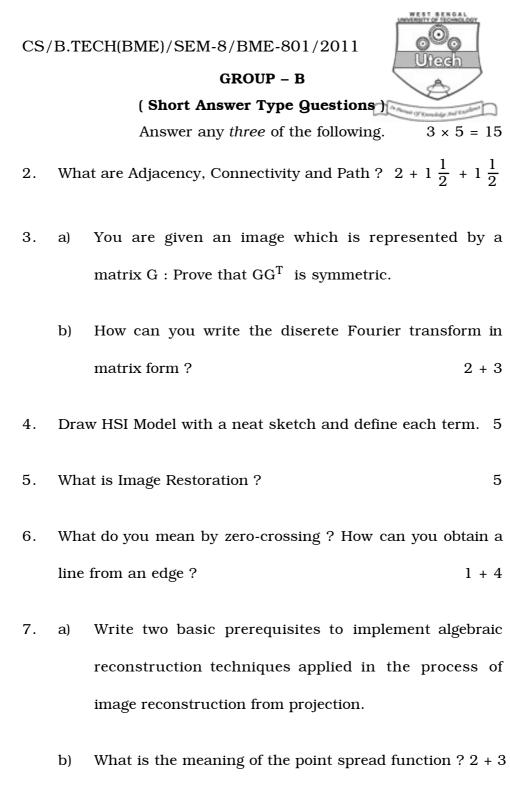
1. Choose the correct alternatives for the following :

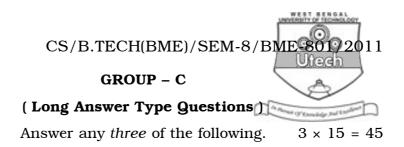
 $10 \times 1 = 10$

- i) If I stands for unit matrix, then the matrix U is said to be 'unitary' if
 - a) $U^{T*} U = U^{-1}$
 - b) $UU^{T^*} = U^{-1}$
 - c) $UU^{T^*} = I$
 - d) $U^{T^*} U = I.$

8137

[Turn over


CS/B.TECH(BME)/SEM-8/BME-801/2011



- ii) In Bit-plane slicing method, the higher order bi
 - a) Gross structure of the image
 - b) Fine structure of the image
 - c) Brightness of the image
 - d) Contrast of the image.
- iii) An impulse noise is considered as
 - a) Multiplicative noise b) Erlang noise
 - c) Normal noise d) Additive noise.
- iv) High contrast image has distribution of histogram.
 - a) lower end b) gigher end
 - c) narrow range d) wider range.
- v) FBP stands for
 - a) False blurred point
 - b) Finite blurred position
 - c) Fan beam projection
 - d) Fourier beam projection.

		CS/B.TECH(BM	E)/S	SEM-8/BME-80172011	
vi)	Ima	age smoothing in free	quen	cy domain filtering is	
	ach	ieved maximum by		An Annual (I' Kannainly Ind Excelored	
	a)	Ideal low-pass filter			
	b)	Gaussian filter			
	c)	Buterworth filter			
	d)	Chebyshev filter.			
vii)	Generic complexity of Global operator is				
	a)	Constant	b)	Variable	
	c)	P ²	d)	N ² .	
viii)	Huffman code efficiency is%.				
	a)	80	b)	85	
	c)	90	d)	97.	
ix)	Which of the following algebraic approaches is more				
	flexible in image restoration process ?				
	a)	Unconstrained	b)	Constrained	
	c)	Both (a) & (b)	d)	None of these.	
X)	Zero-crossing is a phenomenon occurs in				
	a)	point detection			
	b)	line detection			
	c)	edge detection			
	d)	smooth surface detect	ion.		
	,				

[Turn over

- 8. a) Describe the technique of Histogram matching.
 - b) How can you adjust the brightness of an image on a CRT ?
 - c) How does an ideal low-pass filter work for image smoothing in frequency domain ? What are the methodologies of using Butterworth filter for the same ? 5 + 4 + (3 + 3)
- 9. a) Confirm the realationship between the average of the image *g* and its DFT, where *g* is given by

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- b) Why do we need the statistical description of images ?
- c) What is an intensity image ? What do you mean by City block distance and Chessboard distance ?

$$5 + 4 + (2 + 4)$$

[Turn over

8137

- 10. a) How can you enhance the dark region of an image, keeping the bright region unchanged of a gray scale image ?
 - b) How can you keep the information of edges of an image while filtering with a mask ? Give a probable algorithm to support your answer.
 - c) What do you mean by Hamming code ? 5 + 5 + 5
- 11. a) What is the basic difference between image enhancement and image restroration ? How do we define a 2D filter ?
 - b) How can we obtain information on the transfer function H (u, v) of the image degradation process ? What happens to the point (u, v) when H (u, v) = 0 ?
 - c) Draw the model of the image degradation / restoration process. Give an example of circulant matrix.

(2+2)+(4+3)+(3+1)

- 12. a) What do you mean by fidelity criteria ? Obtain an expression for mean square SNR in case of objective fidelity criteria.
 - b) What is Huffman coding ? Explain in detail the method of Huffman coding considering six character symbol.

(3+4)+(2+6)

CS/B.TECH(BME)/SEM-8/BME-801/2011

- 13. a) What exactly is the purpose of image segmentation and edge detection ? Are there any segmentation methods that taken into consideration for the spatial proximity of pixels ?
 - b) Briefly explain the ways of measuring distance between two pixels.
 - c) Name two well known image degradation phenomena. Express an image function f(x, y) as an M × N matrix form. (3 + 3) + 6 + (1 + 2)