

CS/B.Tech/SEM-1/EC-101/2009-10 2009 BASIC ELECTRONICS ENGINEERING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Bandgaps of Silicon and Germanium are
a) 0.67 eV and $1 \cdot 1 \mathrm{eV}$
b) $\quad 5.89 \mathrm{eV}$ and 4.56 eV
c) 0.87 eV and 6.78 eV
d) 0.54 eV and 0.786 eV .
ii) Gain of inverting op-amp is
a) $\quad-R_{f} / R_{1}$
b) $\quad\left(1+R_{f} / R_{1}\right)$
c) $\quad\left(R_{f}+R_{1}\right) / R_{f}$
d) $\quad-\left(R_{f}+R_{1}\right) / R_{1}$.

CS/B.Tech/SEM-1/EC-101/2009-10
iii) In active mode of operation of BJT
a) emitter-base junction is forward-biased and collector-base junction is reverse-biased
b) emitter-base junction is forward-biased and collector-base junction is forward-biased
c) emitter-base junction is reverse-biased and collector-junction is forward-biased
d) emitter-base junction is reverse-biased and collector-base junction is reverse-biased.
iv) In CRO, circle is produced as Lissajuos figure when the phase difference between x and y-signals is
a) 90°
b) 180°
c) 270°
d) 0°.
v) SCR has_terminals
a) 3
b) 4
c) 2
d) 6 .
vi) $\quad \mathrm{CMRR}=$
a) $\operatorname{Mod}\left(A_{d} / A_{c}\right)$ [$A_{d}=$ voltage gain for difference signal; $\quad A_{c}=$ voltage gain for common mode signal]
b) $\quad V_{2} / V_{1}\left[V_{1}=\right.$ non-inverting input terminal signal; $V_{2}=$ inverting input terminal signal]
c) $\quad A_{1}-A_{2}\left[A_{1}=\right.$ voltage gain when inverting terminal is grounded; $A_{2}=$ voltage gain when non-inverting terminal is grounded]
d) $\quad V_{d} V_{c}\left[V_{d}=\right.$ difference signal; $V_{c}=$ common-mode signal].

CS / B.Tech/SEM-1 /EC-101\%2009-10
 Urech

vii) The diffusion capacitance of a forward-biased pin junction diode varies
a) linearly with current
b) inversely with current
c) as the square of the current
d) as the square root of the current.
viii) When the reverse voltage across $p-n$ junction is gradually decreased, the depletion region inside the diode
a) does not change in width
b) initially increases upto certain width then decreases
c) continuously increases in width
d) continuously decreases in width.
ix) Semiconductors have
a) zero temperature coefficient of resistance
b) positive temperature coefficient of resistance
c) negative temperature coefficient of resistance
d) none of these.
x) The ripple factor of a power supply is a measure of
a) its filter efficiency
b) its voltage regulation
c) diode rating
d) purity of power output.

CS/B.Tech/SEM-1/EC-101/2009-10

xi) The maximum efficiency of a full-wave rectifier gan be
a) $37 \cdot 2 \%$
b)
$40 \cdot 6 \%$ n-
c) $53 \cdot 9 \%$
d) $81 \cdot 2 \%$.
xii) JFET is a
a) voltage controlled voltage source
b) voltage controlled current source
c) current controlled voltage source
d) current controlled current source.
xiii) Input and output impedances of a voltage shunt feedback are
a) $\quad Z_{i} /(1+A \beta)$ and $Z_{o} /(1+A \beta)$
b) $\quad Z_{i}(1+A \beta)$ and $Z_{o} /(1+A \beta)$
c) $\quad Z_{i} /(1+A \beta)$ and $Z_{o}(1+A \beta)$
d) $\quad Z_{i}(1+A \beta)$ and $Z_{o}(1+A \beta)$.
xiv) Unit of diffusion constant for silicon in SI unit is
a) $\mathrm{m}^{2} / \mathrm{V} . \mathrm{s}$
b) $\quad \mathrm{m}^{2} / \mathrm{s}$
c) m / s
d) $\quad \mathrm{V} / \mathrm{s}$.
xv) Temperature coefficient of resistance for intrinsic semiconductor is
a) positive
b) negative
c) infinity
d) does not depend on temperature.

2. Distinguish between Avalanche breakdown and Zener breakdown. Why is Zener diode called reference diode?
3. What are the advantages and disadvantages of bridge rectifier over full-wave rectifier using two diodes?
4. Define CMRR of an OPAMP.

When a voltage of $V_{1}=40 \mu \mathrm{~V}$ is applied to the non-inverting input terminal and a voltage $V_{2}=-40 \mu \mathrm{~V}$ is applied to the inverting input terminal of an OPAMP, an output voltage $V_{0}=100 \mathrm{mV}$ is obtained. But when $V_{1}=V_{2}=40 \mu \mathrm{~V}$, one obtains $V_{0}=4 \mu \mathrm{~V}$. Calculate the CMRR.
5. What are the basic differences between BJT and FET ? Define pinch of voltage.
6. Derive the expressions for the electrical conductivity of
i) an intrinsic semiconductor
ii) an N-type semiconductor
iii) a P-type semiconductor.

CS/B.Tech/SEM-1/EC-101/2009-10
GROUP - C (Long Answer Type Guestions)
Answer any three of the following. $3 \times 15=45$
7. a) Explain the term "Drift" related to semiconductors.
b) What is electrical conductivity ? Derive the expression for electrical conductivity of a semi-conductor.
c) Show that the total electron current density is equal to the sum of drift and diffusion current density.
d) Find:
i) conductivity and
ii) resistance of a bar of pure silicon of length 1 cm and cross-sectional area $1 \mathrm{~mm}^{2}$ at 300 K . Given $\quad \mu_{n}=0.13 \mathrm{~m}^{2} / \mathrm{Vs}, \quad \mu_{p}=0.05 \mathrm{~m}^{2} / \mathrm{Vs}$, $n i=1 \cdot 5^{*} 10^{16} / \mathrm{m}^{3} . \quad 3+1+3+5+3$
8. a) With regard to full-wave rectification explain the working of a bridge rectifier and compare its PIV with other rectifiers. Give two advantages and disadvantages of the bridge rectifier.
b) Find out the expression for efficiency, form factor and ripple factor for a half-wave rectifier.
c) A full-wave rectifier uses a double diode, the forward resistance of each element being 100 ohm. The rectifier supplies current to a load resistance of 1000 ohm. The primary to secondary turns ratio of the centre tapped transformer is $10: 1$. The transformer primary is fed from a supply of 240 V (rms).

Find :
i) DC load current
ii) direct current in each diode
iii) the ripple voltage and
iv) the efficiency of rectification. $(4+2)+3+6$
9. a) Formulate the expression for voltage gain, current gain and output resistance of a transistor amplifier employing h-parameters.
b) A transistor amplifier in CE configuration couples a source of internal resistance $1 \mathrm{k} \Omega$ to a load of $20 \mathrm{k} \Omega$. Find the input and the output resistance if $h_{i e}=1 \mathrm{k} \Omega$, $h_{r e}=2 \cdot 5^{*} 10^{-4} \mathrm{k} \Omega, h_{f e}=150 \& 1 / h_{o e}=40 \mathrm{k} \Omega$.
[Turn over

CS/B.Tech/SEM-1/EC-101/2009-10
c) Differentiate between depletion and enhancement type MOSFETs.
10. a) Draw the circuit diagram of clamper and explain the working principle of it.
b) Explain the operation of bridge rectifier with proper circuit diagram.
c) Evaluate the ripple factor and efficiency of half-wave rectifier.
11. Write short notes on any three of the following :
a) Clipper circuit
b) Eber-Moll model of transistor
c) Enhancement and depletion MOSFETs
d) Hybrid parameters for a transistor.

