CS/B.TECH/AUE/APM/CE/CSE/IT/ME/PE/TT(O)/ODD/ SEM-3/PH-301/2019-20

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PH-301

PUID: 03003 (To be mentioned in the main answer script)

PHYSICS-II

Time Allotted: 3 Hours

Full Marks: 70

http://www.makaut.com

http://www.makaut.com

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the $10 \times 1 = 10$ following:
 - A butterfly is flying inside a hollow sphere. What is the type of constrain?
 - Holonomic
- Non-holonomic
- Scleronomic
- Rheonomic.
- A cube of side a is placed in a uniform electric field $\overrightarrow{E} = \overrightarrow{i} \overrightarrow{E}_0$. the total electric flux through the cube

is

a)

**-3302/3(O)

Turn over

http://www.makaut.com

CS/B.TECH/AUE/APM/CE/CSE/IT/ME/PE/TT(O)/ODD/ SEM-3/PH-301/2019-20

The relation between \overrightarrow{D} (Displacement vector), \overrightarrow{E} (Electric field) and \overrightarrow{P} (Polarization vector) is

a)
$$\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} - \overrightarrow{P}$$

b)
$$\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} + \overrightarrow{P}$$

c)
$$\overrightarrow{D} = \varepsilon_0 \overrightarrow{P} + \overrightarrow{E}$$

d)
$$\overrightarrow{D} = \overrightarrow{E} + \overrightarrow{P}/\varepsilon_0$$
.

The differential form of Ampere's circuital law is

a)
$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = \mu_0 \overrightarrow{J}$$

b)
$$\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \overrightarrow{J}$$

c)
$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = \overrightarrow{J}$$

d)
$$\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \varepsilon_0 \overrightarrow{J}$$
.

The direction of propagation of electromagnetic wave is given by

- along \overrightarrow{E} . \overrightarrow{B}
- b) along $\overrightarrow{E} \times \overrightarrow{B}$

http://www.makaut.com

along \overrightarrow{B} c)

along \overrightarrow{E} .

An electric dipole placed in a non-uniform electric field experiences

- a torque but not a force
- a force as well as a torque b)
- a force but not a torque
- neither a force nor a torque.

The two parallel wires carry current along opposite directions. The resultant force experienced by the two wires is

repulsive

attractive

torsional

no force.

**-3302/3(O)

2

viii) For any scalar function $\phi = xyz$, Curl (grad ϕ) at (1, 1, 1) is

a)
$$(\hat{i} + \hat{j} + \hat{k})$$
 b) $2(\hat{i} + \hat{j} + \hat{k})$

b)
$$2(\hat{i} + \hat{j} + \hat{k})$$

c)
$$\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$$
 d) 0.

ix) If a charged particle of mass m is accelerated through potential difference V, the de-Broglie wavelength is proportional to

b)
$$V^{-\frac{1}{2}}$$

d)
$$V^{\frac{2}{3}}$$

If a wave function ψ (x) is normalized, then

$$\iiint \psi(x)\psi(x)\,\mathrm{d}v$$
 is

d) 1/2.

A coin is tossed n times. The number of microstates is

c)

d) $2^{n}/n!$

The Fermi energy of a free electron gas depends on the electron density n as

a)

c)

Turn over

http://www.makaut.com

http://www.makaut.com

http://www.makaut.com

CS/B.TECH/AUE/APM/CE/CSE/IT/ME/PE/TT(O)/ODD/ SEM-3/PH-301/2019-20

xiii) For a projectile with position co-ordinate (x, y, z), the number of cyclic co-ordinates is

xiv) The value of (x, p^n) is

- a) $\hat{i} n \hbar p_x^{n-1}$ b) $\hat{i} n \hbar x^{n-1}$
- c) $\int_{i}^{h} p_{x} \frac{n-1}{n}$ d) 0.

xv) The degrees of freedom of a system consisting of Nparticles subjected to l number of constraints is equal to http://www.makaut.com

(3N+l)

b) (3Nl)

(3N)'

d) (3N-1).

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- If the function $\varphi(x, y, z) = 2xy + z^2$, is its corresponding field sonenoidal or irrotational?
 - Derive the Coulomb law from Gauss' law. 3 + 2
- A capacitor is made of two spherical sphere conductors of radii a and b (where a < b), with vacuum in the intervening space. If the external sphere is kept at ground and the outer one has a charge density σ, then solve the Laplace's equation to find the electrostatic potential in the space between the spheres.

3

CS/B.TECH/AUE/APM/CE/CSE/IT/ME/PE/TT(O)/ODD/ SEM-3/PH-301/2019-20

- Derive the expression of momentum operator. Show that 'position' operator and 'momentum' operator are not commutative.
 - Write down the Lagrangian for a freely falling particle under gravity.
- State Ampere's circuital law and deduce its 5. differential form.
 - Prove that $\vec{E} = \sin(y-t)\hat{k}$ and $\vec{B} = \sin(y-t)\hat{i}$ constitute a possible electromagnetic field.

$$(1 + 2) + 2$$

- Consider a three particle system each of which can exit in a energy state ϵ_1 , ϵ_2 and ϵ_3 . What are the possible states, if the particles are (i) bosons, (ii) fermions?
 - Draw and explain the Fermi distribution function at (i) T = 0 K (ii) T > 0 K.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- In a region of space, the electric field is given by 7. $\overrightarrow{E} = 3 \hat{i} + 5 \hat{k}$. Calculate the electric flux through a surface area 100 square unit in X-Y plane.
 - Explain electronic polarization of a dielectric material and find an expression for electronic polarizability in terms of radius of the atom.

[Turn over

**-3302/3(O)

http://www.makaut.com

5

CS/B.TECH/AUE/APM/CE/CSE/IT/ME/PE/TT(O)/ODD/ SEM-3/PH-301/2019-20

- Show that the equation of continuity is given by $\overrightarrow{\nabla}$. $\overrightarrow{j} + \frac{\partial \rho}{\partial t} = 0$, where the symbols have their usual meanings.
- What are the limitations of Newtonian mechanics? 3+(1+5)+4+2

8. a) Establish the relation
$$\overrightarrow{D} = \epsilon_0 \overrightarrow{E} + \overrightarrow{P}$$
, where the symbols have their usual meanings.

- If a charged particle of charge 0.5C is moving with a velocity $3\hat{i} + 4\hat{j} + 5\hat{k}$ m/s through an electric $\overrightarrow{E} = 5 \overrightarrow{i} + 5 \overrightarrow{k}$ and magnetic field induction $\overrightarrow{B} = 2 \hat{i} - 6 \hat{j} - 6 \hat{k}$, then calculate the magnitude and direction of total Lorentz force.
- Find out Hamilton's equation of motion for a system comprising masses M_1 and M_2 connected by a massless string of length L through a frictionless pulley such that $M_1 > M_2$.
- 4 + 5 + 5 + 1What is skin depth?
- Write down the Maxwell's field equations, hence, derive the electromagnetic wave equation in terms of electric vector (in vacuum).
 - State the basic postulates of quantum mechanics.
 - If the atomic weight and density of silver are 108 gm/mole and 10.5 gm/cm³ respectively, find the Fermi energy of silver at T = 0K (considering one free electron per atom). (2 + 3) + 5 + 5

**-3302/3(O)

http://www.makaut.com

http://www.makaut.com

CS/B.TECH/AUE/APM/CE/CSE/IT/ME/PE/TT(O)/ODD/ SEM-3/PH-301/2019-20

- Write down Schrödinger equation for one 10. a dimensional motion of a free particle in an infinite deep potential well. Find its eigenfunction and eigenenergy.
 - What is phase space? Derive the expression of density of state in energy range E to E + dE in phase space.
 - The maximum electric field in an EM wave 800 V/m. Find the maximum value of magnetic intensity and the average value of Poynting vector.

$$5 + (1 + 4) + 5$$

http://www.makaut.com

http://www.makaut.com

- Find the magnetic field of a circular loop carrying 11. a) current 1 on a point on the axis of the loop.
 - A short conductor of length 5 cm is placed parallel to a conductor of length 1.5 m. Both conductors carry a current of 3A and 2A respectively in the same direction. Find the nature and magnitude of the force experienced by the long conductor for their separation 3 cm.
 - generalized advantages the What are c) coordinate?
 - Obtain the equation of motion of a simple 5+3+2+5 pendulum using Lagrange equation.

**-3302/3(O)

| Turn over

CS/B.TECH/AUE/APM/CE/CSE/IT/ME/PE/TT(O)/ODD/ SEM-3/PH-301/2019-20

- Derive Planck's law of black body radiation from 12. a) Bose-Einstein statistics.
 - A system has three energy states ϵ , 2ϵ and 3ϵ . ψ_1 , ψ_2 and ψ_3 are the corresponding normalized wave functions. At an instant the system is in a superpose state $\psi + c_1 \psi_1 + c_2 \psi_2 + c_3 \psi_3$ $c_1 = \sqrt{(1/3)}$ and $c_2 = \sqrt{(1/3)}$.
 - Find c_3 if ψ is normalized.
 - Find out the expectation value of energy.
 - Derive the Maxwell's wave equation for a charge free non-conducting medium. Hence prove that speed of light in a non-conducting medium is less than the speed of light in vacuum.

http://www.makaut.com

http://www.makaut.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भैजे और 10 रुपये पार्य, Paytm or Google Pay 社

**-3302/3(O)

8

http://www.makaut.com