

Invigilator's Signature : \qquad

CS/ BNS/ SEM-4/ BNS-402/ 2012 2012 APPLIED MATHEMATICS - IV

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
$10 \times 1=10$
i) The value of $\left|\begin{array}{lll}1996 & 2004 & 2010 \\ 1997 & 2005 & 2011 \\ 1998 & 2006 & 2012\end{array}\right|$ is
a) 1
b) 0
c) 2013
d) none of these.

CS/BNS/SEM-4/BNS-402/2012
ii) The matrix $A=\left(\begin{array}{rrr}0 & 2 & -7 \\ -2 & 0 & 9 \\ 7 & -9 & 0\end{array}\right)$ is
a) symmetric
b) skew-symmetric
c) hermitian
d) none of these.
iii) The rank of the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$ is
a) 1
b) 2
c) c
d) none of these.
iv) The equation $x+y+z=0$ has
a) infinite number of solutions
b) no solutions
c) unique solutions
d) two solutions.
v) The eigenvalues of the matrix A are $2 \& 3$. Then the eigenvalues of A^{2} are
a) 2,3
b) 4,3
c) 4,9
d) 2,9 .
vi) Which of the following is not true (the notations have their usual meanings)?
a) $\Delta=E-1$
b) $\Delta . \nabla=\Delta-\nabla$
c) $\frac{\Delta}{\nabla}=\Delta+\nabla$
d) $\Delta=1-E^{1}$.
vii) $\Delta^{2} e^{x}$ is equal to (where $h=1$)
a) $(e-1)^{2} e^{x}$
b) $(e-1) e^{x}$
c) $\quad e^{2 x}(e-1)$
d) $e^{2 x+1}$.
viii) In Simpson's $\frac{1}{3}$ rd rule of finding $\int_{a} f(x) \mathrm{d} x, f(x)$ is approximated by
a) line segment
b) parabola
c) circular sector
d) parts of ellipse.
ix) Lagrange interpolation formula is used for
a) equal interval
b) unequal interal
c) both equal \& unequal intervals
d) none of these.

CS/BNS/SEM-4/BNS-402/2012
x) The mean of Binomial distribution $\operatorname{Bin}(n p)$ (where $n \&$ p are the number of trials and probability of suceess) is
a) $\frac{n}{p}$
b) 0
c) $n p$
d) $\quad 1$.
xi) If X is normally distributed with zero mean and unit variance, then the expectation of X is
a) 1
b) 2
c) 8
d) 0 .
xii) $b_{y x} \times b_{x y}$ (where $b_{y x}, b_{x y}$ and r are regression and correlation coefficients) is
a) r
b) r^{2}
c) $\frac{1}{r}$
d) $\frac{1}{r^{2}}$.

GROUP - B
 (Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Reduce the following matrix into its normal form and hence find its rank :

$$
A=\left(\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right) \text {. }
$$

3. Using the partition method, find the inverse of

$$
\left(\begin{array}{rrr}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{array}\right)
$$

4. Find the cubic polynomial which takes the following values :

$\boldsymbol{x}:$	0	1	2	3
$\boldsymbol{f}(\boldsymbol{x}):$	1	2	1	10

5. Obtain the function whose first difference is $9 x^{2}+11 x+5$.
6. A hospital switchboard receives on an average 4 emergency calls in a five-minute interval. What is the probability that there are (i) at most two emergency calls in a five-minute interval, (ii) exactly 3 emergency calls in a five-minute interval ?
7. Obtain the mean and median for the following frequency distribution :

\boldsymbol{x}	1	2	3	4	5	6	7	8	9
\boldsymbol{f}	8	10	11	16	20	25	15	9	6

GROUP - C

(Long Answer Type Questions

Answer any three of the following. $\quad 3 \times 15=45$
8. a) Diagonalise the matrix $\left(\begin{array}{rrr}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right)$.
b) Reduce the quadratic form
$3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form.
c) Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$ and hence find its inverse. $5+5+5$
9. a) Find a positive root of $x^{2}+2 x-2=0$ by NewtonRaphson method correct to four decimal places.
b) Evaluate $\int_{0}^{6} \frac{\mathrm{~d} x}{1+x^{2}}$ by using Simpson's one-third rule correct up to two places of decimal taking seven points.
c) Solve the following set of simultaneously linear equations by Gauss-elimination method :

$$
\left.\begin{array}{l}
\qquad \begin{array}{rl}
2 x_{1}+3 x_{2}+x_{3}=9 \\
x_{1}+2 x_{2}+3 x_{3}=6
\end{array} \\
3 x_{1}+x_{2}+2 x_{3}=8
\end{array}\right\} \text { correct up to 3-significant figures. } \quad 5+5+5 \text {. }
$$

10. a) Investigate the values of λ and μ so that the equations $2 x+3 y+5 z=9,7 x+3 y-2 z=8$,
 have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.
b) Prove that value of r (correlation coefficient) lies between -1 and 1 i.e., $-1 \leq r \leq 1$.
c) Express $\frac{x^{2}+x+1}{(x-1)(x-2)(x-3)(x-4)}$ as partial fraction using Lagrangian interpolation formula.

$$
5+5+5
$$

11. a) The probability density function of a continuous distribution is given by $f(x)=\frac{3}{4} x(2-x), 0<x 2$. Compute the mean and variance.
b) The joint probability function of two discrete random variables X and Y is given by $f(x, y)=c(2 x+y)$ where x and y can assume all integers such that $0 \leq x \leq 2,0 \leq y \leq 3$ and $f(x, y)=0$ otherwise.
i) Find the value of the constant c
ii) Find $p(X=2, Y=1)$
iii) Find $p(X \geq 1, Y \leq 2)$

CS/BNS/SEM-4/BNS-402/2012
c) The length of bolts produced by a machine is normally distributed with mean 4 and S.D. 0.5. A bolt is defective if its length does not lie in the interval ($3 \cdot 8,4 \cdot 3$). Find the percentage of defective bolts produced by the machine.
[Given $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0.6} e^{-t^{2} / 2} \mathrm{~d} t=0.7257$ and

$$
\left.\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0.4} e^{-t^{2} / 2} \mathrm{~d} t=0.6554\right]
$$

12. a) The skewness γ of a random variable X is defined by $\gamma=\frac{1}{\sigma^{3}} E\left([X-\mu]^{3}\right)$.

Show that for a symmetric distribution (whose third central moment exists) the skewness is zero.
b) Solve by Jacobi's iteration method, the system of equations:
$20 x+y-2 z=17,3 x+20 y-z=-18$,
$2 x-3 y+20 z=25$.

