	(Uitech
Name:	
Roll No. :	A Parago (y Exemple for State Care)
Invigilator's Signature :	

CS/BNS/SEM-4/BNS-402/2012 2012 APPLIED MATHEMATICS – IV

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- a) 1
- b) 0
- c) 2013
- d) none of these.

4130 [Turn over

CS/BNS/SEM-4/BNS-402/2012

- a) symmetric
- b) skew-symmetric
- c) hermitian
- d) none of these.
- iii) The rank of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ is
 - a) 1

b) 2

c) c

- d) none of these.
- iv) The equation x + y + z = 0 has
 - a) infinite number of solutions
 - b) no solutions
 - c) unique solutions
 - d) two solutions.
- v) The eigenvalues of the matrix A are 2 & 3. Then the eigenvalues of A^2 are
 - a) 2, 3

b) 4, 3

c) 4, 9

d) 2, 9.

- Which of the following is not true (the notations have vi) their usual meanings)?
 - a) $\Delta = E 1$
- b) $\Delta \cdot \nabla = \Delta \nabla$
- c) $\frac{\Delta}{\nabla} = \Delta + \nabla$
- d) $\Delta = 1 E^1$.
- vii) $\Delta^2 e^x$ is equal to (where h = 1)
 - a) $(e-1)^2 e^x$ b) $(e-1) e^x$
 - c) $e^{2x}(e-1)$ d) e^{2x+1} .
- viii) In Simpson's $\frac{1}{3}$ rd rule of finding $\int_{a}^{b} f(x) dx$, f(x) is approximated by
 - line segment a)
- b) parabola
- circular sector c)
- parts of ellipse. d)
- Lagrange interpolation formula is used for ix)
 - equal interval a)
 - unequal interal b)
 - c) both equal & unequal intervals
 - d) none of these.

a) $\frac{n}{p}$

b) 0

c) np

d) 1.

xi) If X is normally distributed with zero mean and unit variance, then the expectation of X is

a) 1

b) 2

c) 8

d) 0.

xii) $b_{yx} \times b_{xy}$ (where b_{yx} , b_{xy} and r are regression and correlation coefficients) is

a) r

b) r^2

c) $\frac{1}{r}$

d) $\frac{1}{r^2}$

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Reduce the following matrix into its normal form and hence find its rank:

$$A = \left(\begin{array}{cccc} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{array}\right).$$

3. Using the partition method, find the inverse of

$$\left(\begin{array}{cccc}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{array}\right)$$

4. Find the cubic polynomial which takes the following values:

x:	0	1	2	3
f(x):	1	2	1	10

- 5. Obtain the function whose first difference is $9x^2 + 11x + 5$.
- 6. A hospital switchboard receives on an average 4 emergency calls in a five-minute interval. What is the probability that there are (i) at most two emergency calls in a five-minute interval, (ii) exactly 3 emergency calls in a five-minute interval?
- 7. Obtain the mean and median for the following frequency distribution :

X	1	2	3	4	5	6	7	8	9
f	8	10	11	16	20	25	15	9	6

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

$$3 \times 15 = 45$$

- 8. a) Diagonalise the matrix $\begin{pmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$.
 - b) Reduce the quadratic form

 $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form.

- c) Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 4 \\ & & \\ 2 & 3 \end{pmatrix} \text{ and hence find its inverse.} \qquad 5+5+5$
- 9. a) Find a positive root of $x^2 + 2x 2 = 0$ by Newton-Raphson method correct to four decimal places.
 - b) Evaluate $\int_{0}^{6} \frac{dx}{1 + x^2}$ by using Simpson's one-third rule

correct up to two places of decimal taking seven points.

c) Solve the following set of simultaneously linear equations by Gauss-elimination method :

$$2x_1 + 3x_2 + x_3 = 9$$

$$x_1 + 2x_2 + 3x_3 = 6$$

$$3x_1 + x_2 + 2x_3 = 8$$

correct up to 3-significant figures.

$$5 + 5 + 5$$

- 10. a) Investigate the values of λ and μ so that the equations 2x+3y+5z=9, 7x+3y-2z=8, $2x+3y+\lambda z=\mu$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.
 - b) Prove that value of r (correlation coefficient) lies between 1 and 1 *i.e.*, 1 $\leq r \leq 1$.
 - c) Express $\frac{x^2 + x + 1}{(x-1)(x-2)(x-3)(x-4)}$ as partial fraction using Lagrangian interpolation formula.

$$5 + 5 + 5$$

- 11. a) The probability density function of a continuous distribution is given by $f(x) = \frac{3}{4}x(2-x)$, 0 < x 2. Compute the mean and variance.
 - b) The joint probability function of two discrete random variables X and Y is given by f(x, y) = c(2x + y) where x and y can assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$ and f(x, y) = 0 otherwise.
 - i) Find the value of the constant *c*
 - ii) Find p(X = 2, Y = 1)
 - iii) Find $p(X \ge 1, Y \le 2)$

CS/BNS/SEM-4/BNS-402/2012

Given
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.6} e^{-t^2/2} dt = 0.7257$$
 and

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.4} e^{-t^2/2} dt = 0.6554$$

12. a) The skewness γ of a random variable X is defined by $\gamma = \frac{1}{\sigma^3} E\left([X - \mu]^3 \right).$

Show that for a symmetric distribution (whose third central moment exists) the skewness is zero.

b) Solve by Jacobi's iteration method, the system of equations :

$$20x + y - 2z = 17$$
, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$. $7 + 8$

4130 8