	Utech
Name:	
Roll No.:	A Grant of Kambidge 2nd Explored
Invigilator's Signature :	

APPLIED MATHEMATICS - II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

 $1. \quad \hbox{Choose the correct alternatives for any $\it ten$ of the following:}\\$

$$10 \times 1 = 10$$

i) The series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent if

- a) $p \ge 1$
- b) p > 1
- c) p < 1
- d) $p \le 1$.
- ii) The series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \dots$ is
 - a) convergent
- b) divergent
- c) oscillatory
- d) none of these.

2018 [Turn over

- iii) If $\sum a_n$ is convergent series, then the $\lim_{n \to \infty}$
 - a) necessary condition
 - b) sufficient condition
 - c) neither necessary nor sufficient conditon
 - d) necessary as well as sufficient condition.
- Relation between beta and gamma functiona is iv)

a)
$$B(m, n) = \frac{\Gamma(m)}{\Gamma(n)\Gamma(m+n)}$$

b)
$$B(m, n) = \frac{\Gamma(n)}{\Gamma(m)\Gamma(m+n)}$$

c)
$$B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$

- d) none of these.
- The error function or the probability integral is defined v) as

a)
$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

a)
$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{x} e^{-t^2} dt$$

b) $erf(x) = \frac{1}{\sqrt{\pi}} \int_{0}^{x} e^{-t} dt$

c)
$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^3} dt$$

d) none of these.

a)
$$a+b+c+d+e+f$$

- b) abcdef
- c) (b-a)(d-c)(f-e)
- d) (a + b)(c + d)(e + f).

vii) If c is the circle
$$x^2 + y^2 = 4$$
, then
$$\int_{c} x^2 dx$$
 is

a) 0

b) $\frac{1}{3}$

c) 3

d) 1

viii) The moment of inertia of thin uniform rod of mass M and length 2a about an axis perpendicular to the rod at its centre is

a) $\frac{Ma^2}{3}$

b) $\frac{Ma^2}{2}$

c) *Ma* ²

d) $\frac{Ma^2}{4}$.

ix) The value of
$$\int_{0}^{\infty} \frac{dx}{1+x}$$
 by Simpson's $\frac{1}{3}$ rd rule is

- a) 0.96315
- b) 0.63915
- c) 0.69315
- d) none of these.

- x) The period of the function $f(x) = \sin nx$ is
 - a) 2_

b) 2 n

c) $\frac{2\pi}{n}$

- d) 4π .
- xi) Parseval's identity states that $\frac{1}{L}\int_{-L}^{L} (f(x))^2 dx$ is equal

to

a)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n + b_n)$$

b)
$$\frac{{a_0}^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

c)
$$\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

- d) none of these.
- xii) Simpson's one third rule gives an exact value of the integral if integrant $f\left(x\right)$ is a polynomial of degree at most
 - a) two

b) one

c) three

d) four.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Obtain the Fourier series for $f(x) = e^{-x}$ in the interval 2. $0 < x < 2\pi.$
- 3. The velocity v (km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows :

х	2	4	6	8	10	12	14	16	18	20
у	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes by Simpson's one-third rule.

4. Evaluate:

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dxdy$$

by changing to polar coordinates. Hence, show that

$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

5. The sides of a spherical triangle ABC are all quadrants and x, y, z are the arcs joining any point within the traingle to the angular points. Prove that

$$\cos^2 x + \cos^2 y + \cos^2 z = 1.$$

7. If δ be the length of the arc from the vertex of an isosceles triangle dividing the base into segments α and β , then prove that $\tan\frac{\alpha}{2}\,\tan\frac{\beta}{2}\,=\tan\left(\frac{\alpha+\delta}{2}\right)\,\tan\,\left(\frac{\alpha-\delta}{2}\right)$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Prove that $\int_{0}^{\infty} \left(\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \right) dx = \sum_{n=1}^{\infty} \frac{1}{n^{2} (n+1)}.$
 - b) Find the Fourier sine transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m > 0.$
 - c) If in a spherical $\triangle ABC$, α , β be the arcs drawn from right angle C respectively perpendicular to and bisecting the hypotenuse c, show that $\sin^2\frac{1}{2} C (1 + \sin^2 \alpha) = \sin^2 \beta. \qquad 5 + 5 + 5$

9. a) Show that
$$\int_{a}^{b} (x-a)^{3} (b-x)^{2} dx = \frac{(b-a)^{6}}{60}$$

b) Show that
$$\int_{0}^{\infty} e^{-4x} x^{3/2} dx = \frac{3}{128} \sqrt{\pi} .$$

Show that the Fourier series coresponding to $f(x) = x^2$ c)

10. a) A solid of revolution is formed by rotating about the *x*-axis, the area between the *x*-axis, the lines x = 0 and x = 1 and a curve through the points with the following co-ordinates:

<i>x</i> :	0	00.00	0.25		0.50	0.75	5	1.00
y :	1.0	0000	0.989	6	0.9589	0.908	39	0.8415

Estimate the volume of the solid formed using Simpson's rule.

- 11. a) Prove that $B\left(m, \frac{1}{2}\right) = 2^{2m-1} B(m, m)$.
 - b) Find the area of the portion of the cylinder $x^2 + z^2 = 4$ lying inside the cylinder $x^2 + y^2 = 4$.
 - c) Given $C = 69^{\circ} 25^{l}$, $A = 54^{\circ} 55^{l}$, $C = 90^{\circ}$. Solve the triangle. 5 + 5 + 5
- 12. a) Evaluate $\int \int r \sin \theta \, dr d\theta$ over the area of the cardioid $r = a \, (1 + \cos \theta)$ above the initial line.
 - b) Show that the area between the parabolas $y^2 = 4 \ ax$ and $x^2 = 4ay$ is $\frac{16}{3} \ a^2$.
 - c) Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

5 + 5 + 5

2018