	Utech
Name:	
Roll No.:	To Stange (N'Exercising 2nd Exellent
Invigilator's Signature:	

CS/BCA/SEM-2/BM-201/2012

2012 **MATHEMATICS**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

Choose the correct alternative for any ten the following: 1.

$$10 \times 1 = 10$$

i) Integrating factor of the differential equation

$$x(1-x^2) dy + (2x^2y - y - ax^3) dx = 0$$
 is

a)
$$x/\sqrt{1-x^2}$$

a)
$$x/\sqrt{1-x^2}$$
 b) $x/\sqrt{x(x^2-1)}$

c)
$$x/\sqrt{x^2-1}$$

c)
$$x/\sqrt{x^2-1}$$
 d) $x^2/\sqrt{1-x^2}$.

The order and degree of the differential equation ii)

$$\sqrt{d^2y/dx^2} + dy/dx = y$$
 are

a) 2, 1

b) 1, 2

2, 2 c)

d) 2, 3.

CS/BCA/SEM-2/BM-201/2012

iii)
$$\frac{1}{(D-2)(D-3)}e^{2x}$$
 is

a) $-e^{2x}$

b) xe^{2x}

c) $-xe^{2x}$

- d) $-xe^{3x}$
- iv) If for a sequence $\{U_n\}$, $\lim_{h\to\infty} U_n = 0$, then
 - a) $\{U_n\}$ is converget
 - b) $\{U_n\}$ is divergent
 - c) $\{U_n\}$ is convergent to 0
 - d) none of these.
- v) The infinite series $\sum \frac{n}{n+1}$ is
 - a) divergent
- b) convergent
- c) oscillatory
- d) none of these.
- vi) The value of a for which $\{(1,2,3), (0,-1,9), (4,0,a)\}$ is linearly dependent is
 - a) 20

b) - 10

c) - 5

- d) None of these.
- vii) If the third order square matrix A is diagonalizable, then the number of independent eigenvectors of A is
 - a) two

b) three

c) one

d) none of these.

viii) If S and T be two subspaces of a vector space V, then which of the following is also a subspace of V?

a) $S \cup T$

b) S – T

c) T-S

d) $S \cap T$.

ix) The dimension of the subspace $\{(x, 0, y, 0) \mid x, y \in R\}$ is

a) 1

b) 2

c) 3

d) 4.

x) Let V and W be two vector spaces over R and $T: V \to W$ is a linear mapping. Then $Im\ T$ is a sub-space of

a) *V*

b) *W*

c) $V \cup W$

d) $V \cap W$.

xi) The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if

a) $p \ge 1$

b) p > 1

c) $p \le 1$

d) none of these.

xii) The lower bound of the sequence $\{(-1)^{n-1}/n!\}$ is

a) -1/2

b) 1/2

c) 0

d) none of these.

xiii) Eliminating A and B from $y = A \cos x + B \sin y$, the differential equation is

- a) $\frac{d^2y}{dx^2} = 0$
- b) $\frac{d^2y}{dx^2} y = 0$
- c) $\frac{d^2y}{dx^2} + y = 0$
- d) $\frac{d^2y}{dx^2} = 1.$

CS/BCA/SEM-2/BM-201/2012

xiv) The particular integral of $(D^2 + 1) y = \sin x$ is

a) $x \sin x$ b)

- c) $x \tan x$
- d) $-\frac{x}{2}\cos x$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- Solve: $(px y) (py + x) = a^2 p$ 2. by using the substitution $x^2 = u$, $y^2 = v$ where $p = \frac{dy}{dx}$
- 3. Examine the convergence of the sequence $\left\{ \left(1+\frac{2}{n}\right)^n\right\}$
- Examine the convergence of the series $\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots$
- Show that $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 x_2 + x_3 = x_4 \}$ is 5. a subspace of R^4 .
- 6. Find representative matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)$$

7. Find the basis of

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0, 2x + y + 3z = 0\}$$

2153

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

$$3 \times 15 = 45$$

8. a) Solve:
$$\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} = 12 \frac{\log x}{x^2}$$

b) Obtain the general solution and singular solution of the equation $y = px + \sqrt{a^2 p^2 + b^2}$

c) Solve: $3\frac{dy}{dx} + \frac{2y}{x+1} = \frac{x^3}{y^2}$

9. a) State Leibnitz theorem for Alternating series and test the convergence of the series

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

b) Test the convergence of the following series

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$$

c) Show that the sequence $\left\{2 + \frac{(-1)^n}{n}\right\}$ is convergent.

$$6 + 5 + 4$$

- 10. a) Solve $\frac{d^2y}{dx^2} + 4 \frac{dy}{dx} + 29 y = 0$ when x = 0, y = 0, $\frac{dy}{dx} = 15$
 - b) Show that the sequence $\sqrt{2} \ , \ \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}} \ , \dots \dots \ converges \ to \ 2.$
 - c) Define basis and dimension of a vector space.

$$6 + 6 + 3$$

- 11. a) Prove that the vectors (x_1, y_1) and (x_2, y_2) are linearly dependent, if and only if $x_1 y_2 x_2 y_1 = 0$.
 - b) Show that the vectors $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ form a basis of R^3 . Express (1, 0, 0) as a linear combination of α_1 , α_2 and α_3 .
 - c) If α_1 , α_2 , α_3 form a basis of a vector space V, then prove that $\alpha_1 + \alpha_3$, $2\alpha_1 + 3\alpha_2 + 4\alpha_3$ and $\alpha_1 + 2\alpha_2 + 3\alpha_3$ also form a basis of the vector space V. 4 + 6 + 5
- 12. a) Let T be defined by T(x, y) = (x', y') where $x' = x \cos \theta y \sin \theta$, $y' = x \sin \theta + y \cos \theta$ Prove that T is a linear transformation.
 - b) The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ transforms the basis vectors (1, 2, 1), (2, 1, 0) & (1, -1, -2) to the basis vectors (1, 0, 0), (0, 1, 0) & (0, 0, 1) respectively. Find T. Hence find T(3, -3, 3).
 - c) Find the Kernel, Image, Nullity and Rank of $T:R^3\to R^2 \ \, \text{where}$

$$T(1, 0, 0) = (2, 1)$$

$$T(0, 1, 0) = (0, 1)$$

$$T(0, 0, 1) = (1, 1)$$

4 + 7 + 4

- 13. a) Prove that a subset S of a vector space V over R is a subspace if and only if $\alpha x + \beta y \in S$ for all $\alpha, \beta \in R$ and $x, y \in S$.
 - b) Show that the family M_2 of all real square matrices of order 2 forms a vector space over reals, and find a basis for M_2 .
 - c) Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a + b = 0 \text{ and } a, b, c, d \in R \right\}$

Prove that S is a subspace of M_2 . 5 + 6 + 4