Name :	•
Roll No. :	To Phongage (19'8) amy bridge 3 and Experience
Invigilator's Signature :	

CS/BCA/SEM-1/BM-101/2011-12 2011 MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- - i) The degree of the polynomial ($x^2 + x 2$) / (x 1) is
 - a) 0

b) 1

c) 2

- d) 3.
- ii) If G be a group and $a, b \in G$. Then $(a^{-1} b)^{-1}$ is equal to
 - a) ab 1

- b) $b^{-1}a$
- c) $a^{-1}b^{-1}$
- d) $b^{-1}a^{-1}$.

1054

CS/BCA/SEM-1/BM-101/2011-12

iii)
$$\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}^{y} \right) =$$

a) 1

- b) yx^y
- c) $x^y \log x$
- d) yx^{y-1} .

iv) If
$$P = \{ 2, 4, 6, 7, 8, 9 \}$$
, $Q = \{ 1, 2, 6, 9 \}$ then $P \neq Q$ is

- a) {1,2,6} b) {2,6,9}
- c) $\{1, 6, 9\}$ d) $\{4, 6, 9\}$.

v) The value of
$$\underset{x \to 3}{Lt} \frac{x^3 - 3^3}{x - 3}$$
 is

a) - 12

b) 12

c) 27

- 27. d)

a)
$$(A^T)^{-1} = (A^{-1})^T$$

b)
$$A^{-1} = (\det(A))^{-1}$$

c)
$$(A^2)^{-1} = (A^{-1})^2$$

none of these. d)

vii) The equation $x^4 + 2x^2 - 7x - 5 = 0$ has

- b) one complex roots and three real roots
- c) two real roots and two complex roots
- d) four real roots.

viii) Cardan's method is used for solving equation of degree

a) 2

b) 3

c) 4

d) none of these.

ix) If α , β , γ be the roots of x^3 – $3x^2$ + 6x – 2 = 0, then $\sum \alpha \beta$ is

a) 3

b) 6

c) 2

d) none of these.

x) $f(x, y) = \sqrt{x} + \sqrt{y}$ is a function of degree

a) $\frac{1}{2}$

b) $\frac{1}{3}$

c) 0

d) $\frac{1}{4}$.

CS/BCA/SEM-1/BM-101/2011-12

- a parabola a)
- an ellipse b)
- a straight line
- a circle. d)
- The inverse of the matrix $\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$ is

 - a) $\begin{bmatrix} 2 & -3 \\ 4 & 6 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 \\ -\frac{3}{2} & 3 \end{bmatrix}$
 - c) $\begin{bmatrix} -2 & 4 \\ -3 & 6 \end{bmatrix}$
- d) does not exist.

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- Prove that the set of real numbers of the form $a + b \sqrt{2}$ 2. where a and b are rational numbers, forms a field under addition and multiplication.
- Solve the equation $x^3 9x^2 + 14x + 24 = 0$, two of whose 3. roots are in the ratio 3:2.
- 4. Prove that, any square matrix can be expressed assume of a symmetric matrix and a skew-symmetric matrix.

- 5. If $u = \tan^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{4}\sin 2u.$
- 6. A function f(x) is defined as follows

$$f(x) = 1 + x \text{ when } x \le 2,$$

= 5 - x when x > 2.

Show that f(x) is continuous at x = 2 but f'(2) does not exist.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) State Descart's rule of sign. Using this rule find the nature of the roots of the equation

$$x^4 - 7x^3 + 21x^2 - 9x + 21 = 0.$$

b) Solve the following system of linear equations by Cramer's rule

$$x - y + 2z = 1$$

$$x + y + z = 2$$

$$2x-y+z=5.$$

c) If by a transformation of one rectangular axis to another with same origin the expression ax + by changes to $a^{\top}x^{\top} + b^{\top}y^{\top}$, Prove that $a^{2} + b^{2} = a^{\top 2} + b^{\top 2}$.

CS/BCA/SEM-1/BM-101/2011-12

b) Show that
$$\cos x > 1 - \frac{x^2}{2}$$
 if $0 < x < \frac{\pi}{2}$.

c) If α , β , γ be the roots of the equation

$$x^3 - px^2 + qx - r = 0$$
, then find the value of $\sum \frac{1}{\alpha}$.

9. a) If
$$A = \{a, b, c, d, e\}$$
, $B = \{c, a, e, g\}$ and $C = \{b, e, f, g\}$,

then show that
$$(A \cup B) I C = (A I C) \cup (B I C)$$
.

 Reduce the following equation to the canonical form and determine the nature of the conic represented by it

$$x^2 - 4xy + 4y^2 - 12x - 6y - 39 = 0.$$

c) Evaluate
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\log x} \right)$$
.

1054

10. a) Evaluate
$$\int \frac{dx}{(1+x)\sqrt{1-x^2}}.$$

b) If PSQ be a focal chord of a conic with focus S and semi-latus rectum I, then prove that $\frac{1}{SP} + \frac{1}{SQ} = \frac{2}{I}$.

c) If
$$A - 2B = \begin{bmatrix} 0 & 6 & 26 \\ 6 & -9 & 12 \\ 2 & 9 & -10 \end{bmatrix}$$
 and

$$2A + B = \begin{bmatrix} 10 & -3 & 4 \\ 12 & -3 & 4 \\ 4 & 3 & 0 \end{bmatrix}, \text{ find } A \text{ and } B.$$

11. a) If G be a group such that $(ab)^2 = a^2b^2 \ \forall \ a, \ b \in G$, show that the group G is abelian.

b) Show that
$$\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} dx = \frac{\pi}{8} \log 2.$$

c) If $y = e^{-x} \sin x$, then show that $y_4 + 4y = 0$.
